
RECOMMENDATION FOR SPACE
DATA SYSTEM STANDARDS

THE DATA DESCRIPTION
LANGUAGE EAST
SPECIFICATION

(CCSD0010)

CCSDS 644.0-B-1

BLUE BOOK

May 1997

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page i May 1997

AUTHORITY

Issue: Blue Book, Issue 1
Date: May 1997
Location: São José dos Campos

São Paulo, Brazil

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus
technical agreement of the participating CCSDS Member Agencies. The procedure for review
and authorization of CCSDS Recommendations is detailed in the Procedures Manual for the
Consultative Committee for Space Data Systems (reference [E1]), and the record of Agency
participation in the authorization of this document can be obtained from the CCSDS
Secretariat at the address below.

This Recommendation is published and maintained by:

CCSDS Secretariat
Program Integration Division (Code MG)
National Aeronautics and Space Administration
Washington, DC 20546, USA

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page ii May 1997

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially
established by the management of member space Agencies. The Committee meets periodically
to address data systems problems that are common to all participants, and to formulate sound
technical solutions to these problems. Inasmuch as participation in the CCSDS is completely
voluntary, the results of Committee actions are termed Recommendations and are not
considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary
body. Agency endorsement of this Recommendation is entirely voluntary. Endorsement,
however, indicates the following understandings:

o Whenever an Agency establishes a CCSDS-related standard, this standard will be in
accord with the relevant Recommendation. Establishing such a standard does not
preclude other provisions which an Agency may develop.

o Whenever an Agency establishes a CCSDS-related standard, the Agency will provide
other CCSDS member Agencies with the following information:

-- The standard itself.

-- The anticipated date of initial operational capability.

-- The anticipated duration of operational service.

o Specific service arrangements shall be made via memoranda of agreement. Neither this
Recommendation nor any ensuing standard is a substitute for a memorandum of
agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by
the CCSDS to determine whether it should: (1) remain in effect without change; (2) be
changed to reflect the impact of new technologies, new requirements, or new directions; or,
(3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-
related Agency standards and implementations are not negated or deemed to be non-CCSDS
compatible. It is the responsibility of each Agency to determine when such standards or
implementations are to be modified. Each Agency is, however, strongly encouraged to direct
planning for its new standards and implementations towards the later version of the
Recommendation.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page iii May 1997

FOREWORD

This Recommendation is a technical Recommendation for the standardization of a language to
be used for providing syntactic and in some degree semantic information about data
interchange using Standard Formatted Data Units (SFDUs).

This Recommendation provides the syntax specification of the language EAST which is a
subset of the Ada language.

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommendation is therefore subject to
CCSDS document management and change control procedures which are defined in reference
[E1]. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/ccsds/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat at the address indicated on page i.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page iv May 1997

At time of publication, the active Member and Observer Agencies of the CCSDS were

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– National Aeronautics and Space Administration (NASA)/USA.
– National Space Development Agency of Japan (NASDA)/Japan.
– Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Communications Research Laboratory (CRL)/Japan.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Industry Canada/Communications Research Centre (CRC)/Canada.
– Institute of Space and Astronautical Science (ISAS)/Japan.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page v May 1997

DOCUMENT CONTROL

Document Title Date Status/Remarks

CCSDS 644.0-B-1 Recommendation for Space Data
System Standards: The Data
Description Language EAST
Specification (CCSD0010)

May 1997 Original Issue

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page vi May 1997

CONTENTS

Section Page

1 INTRODUCTION ..1-1

1.1 PURPOSE AND SCOPE .. 1-1
1.2 APPLICABILITY... 1-1
1.3 RATIONALE ... 1-1
1.4 DOCUMENT STRUCTURE .. 1-2
1.5 DEFINITIONS ... 1-2

1.5.1 TERMS ... 1-2
1.5.2 NOMENCLATURE .. 1-2
1.5.3 CONVENTIONS... 1-3

1.6 REFERENCES ... 1-5

2 OVERVIEW ...2-1

2.1 DESIGN AIMS... 2-1
2.2 STRUCTURE OF AN EAST DESCRIPTION.. 2-1
2.3 LANGUAGE SUMMARY ... 2-2

3 DEFINITION OF THE EAST LANGUAGE ..3-1

3.1 LEXICAL ELEMENTS.. 3-1

3.1.1 SEPARATORS AND DELIMITERS .. 3-1
3.1.2 COMMENTS .. 3-1
3.1.3 IDENTIFIERS... 3-2
3.1.4 NUMERIC LITERALS... 3-2

3.2 LOGICAL DESCRIPTION .. 3-7

3.2.1 TYPE DECLARATIONS.. 3-8
3.2.2 SUBTYPE DECLARATIONS .. 3-23
3.2.3 OBJECT DECLARATIONS ... 3-26
3.2.4 REPRESENTATION CLAUSES .. 3-29

3.3 PHYSICAL DESCRIPTION... 3-40

3.3.1 WAY OF STORING ARRAYS... 3-41
3.3.2 WAY OF STORING OCTETS/BITS .. 3-41
3.3.3 REPRESENTATION OF SCALAR TYPES 3-43
3.3.4 RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR

TYPES AND LOGICAL TYPES .. 3-54

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page vii May 1997

CONTENTS (continued)

Section Page

3.3.5 TEMPLATE OF A PHYSICAL DESCRIPTION PART 3-56

4 RESERVED KEYWORDS ..4-1

5 CONFORMANCE ..5-1

ANNEX A ACRONYMS AND GLOSSARY ...A-1
ANNEX B CHARACTER DEFINITION ...B-1
ANNEX C EAST FORMAL SYNTAX SPECIFICATION ...C-1
ANNEX D MAIN DIFFERENCES BETWEEN ADA AND EASTD-1
ANNEX E INFORMATIVE REFERENCES ...E-1
INDEX ..I-1

Figure

1-1 Example of Syntax Diagram... 1-3
3-1 Identifier Definition Diagram ... 3-2
3-2 Decimal Literal Definition Diagram ... 3-2
3-3 Integer Decimal Literal Definition Diagram.. 3-3
3-4 Real Decimal Literal Definition Diagram ... 3-3
3-5 Integer Definition Diagram... 3-3
3-6 Exponent Definition Diagram... 3-3
3-7 Based Literal Definition Diagram ... 3-4
3-8 Integer Based Literal Definition Diagram ... 3-4
3-9 Real Based Literal Definition Diagram ... 3-5
3-10 Based Integer Definition Diagram... 3-5
3-11 Integer Literal Definition Diagram.. 3-6
3-12 Real Literal Definition Diagram ... 3-6
3-13 Logical Part Structure... 3-7
3-14 Enumeration Type Specification Diagram .. 3-8
3-15 Enumeration Literal Definition Diagram... 3-9
3-16 Integer Type Specification Diagram ... 3-9
3-17 Real Type Specification Diagram ... 3-10
3-18 Array Type Specification Diagram ... 3-12
3-19 Index Specification Diagram... 3-12
3-20 Record Type Specification Diagram ... 3-14
3-21 Component Declaration Diagram.. 3-14
3-22 Index Constraint Diagram... 3-15
3-23 Discriminant Specification Diagram ... 3-16
3-24 Variant Part Specification Diagram... 3-16
3-25 Discriminants in a Packet Format ... 3-19

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page viii May 1997

CONTENTS (continued)

Figure Page

3-26 Type Summary ... 3-22
3-27 Subtype Declaration Diagram ... 3-23
3-28 Enumeration Constraint Diagram.. 3-23
3-29 Integer Constraint Diagram... 3-24
3-30 Real Constraint Diagram... 3-25
3-31 Variable Declaration Diagram .. 3-26
3-32 Constant Declaration Diagram .. 3-26
3-33 Length Clause Specification Diagram... 3-29
3-34 Enumeration Clause Specification Diagram.. 3-31
3-35 Component Representation Clause Specification Diagram...................................... 3-32
3-36 Record Representation Clause Specification Diagram... 3-32
3-37 First Tree Structure... 3-34
3-38 Second Tree Structure... 3-35
3-39 Third Tree Structure ... 3-36
3-40 Fourth Tree Structure.. 3-37
3-41 Distance Specification Diagram.. 3-39
3-42 Record Value Specification Diagram .. 3-47
3-43 Array Value Specification Diagram .. 3-47
3-44 ASCII Encoded Decimal Integer Format .. 3-52
3-45 ASCII Encoded Decimal Real Format .. 3-53

Example

1-1 Example of BNF... 1-4
3-1 Decimal Literals ... 3-4
3-2 Based Literals ... 3-5
3-3 Enumeration Type Declarations.. 3-9
3-4 Integer Type Declarations... 3-10
3-5 Real Type Declarations... 3-10
3-6 Constrained Array Type Definitions ... 3-13
3-7 Unconstrained Array Type Definitions ... 3-13
3-8 Record Type Definitions... 3-15
3-9 Record Type Definition with Discriminant ... 3-17
3-10 Record Type Definition with Discriminant ... 3-17
3-11 Logical Description of the Packet Format ... 3-21
3-12 Character Declarations.. 3-24
3-13 Subtype Declarations .. 3-25
3-14 Variable Declaration... 3-26
3-15 Constant Declaration... 3-27
3-16 Number Declarations .. 3-27
3-17 Marker Declaration... 3-28

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page ix May 1997

CONTENTS (continued)

Example Page

3-18 EOF Marker Declaration... 3-28
3-19 Length Clause Declarations .. 3-29
3-20 Explicit Description of Unused Space... 3-30
3-21 Enumeration Clause Declarations ... 3-31
3-22 Type Definitions... 3-33
3-23 Complete Record Representation Clause Declaration.. 3-34
3-24 Incomplete Record Representation Clause Declaration ... 3-35
3-25 Complete Record Representation Clause Declaration.. 3-36
3-26 Complete Record Representation Clause Declaration.. 3-38
3-27 Record Representation Clause Using WORD_32_BITS.. 3-39
3-28 Actual Array Storage Method ... 3-41
3-29 Octet Storage Possibilities.. 3-42
3-30 Actual Bit Order ... 3-43
3-31 Bit Ordering ... 3-45
3-32 Bit Ordering for the Above 16-Bit Signed Integer... 3-48
3-33 Actual Binary Representation of the Above 16-Bit Signed Integer.......................... 3-48
3-34 Bit Ordering for the Above 16-Bit Unsigned Integer... 3-48
3-35 Actual Binary Representation of the Above 16-Bit Unsigned Integer...................... 3-49
3-36 Bit Ordering for the Above 32-Bit Real .. 3-49
3-37 Actual Binary Representation of a 32-Bit Real.. 3-50
3-38 ASCII Enumeration Type Logical Declaration ... 3-52
3-39 ASCII Enumeration Type Physical Description .. 3-52
3-40 ASCII Integer Type Logical Declaration .. 3-54
3-41 ASCII Integer Type Physical Description ... 3-54
3-42 ASCII Real Type Logical Declaration .. 3-54
3-43 ASCII Real Type Physical Description ... 3-54

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 1-1 May 1997

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to establish a common Recommendation for the specification
of a standard language for describing and expressing data in order to interchange them in a
more uniform and automated fashion within and among Agencies participating in the
Consultative Committee for Space Data Systems (CCSDS).

This Recommendation defines the EAST language used to create descriptions of data, called
Data Description Records (DDRs). Such DDRs ensure a complete and exact understanding
of the data and allow it to be interpreted in an automated fashion. This means that a software
tool is able to analyze a DDR and interpret the format of the associated data. This allows the
software to extract values from the data on any host machine (i.e., on a different machine from
the one that produced the data).

A first look at reference [E4], which is a tutorial for the EAST language, may aid the user in
understanding this document. Reference [E4] describes the requirements, explains how to use
the EAST language to describe non-ambiguous data, and suggests practices and tools to the
users.

This Recommendation is registered under the CCSDS Authority and Description Identifier
(ADID): CCSD0010.

1.2 APPLICABILITY

The specifications in this document are applicable to all space-related science and engineering
data exchanges where data descriptions are desired, and these descriptions need to provide an
unambiguous description of the record structure of the data.

1.3 RATIONALE

The Consultative Committee for Space Data Systems has defined the Standard Formatted
Data Unit (SFDU) concept for the implementation of standard data structures to be used for
the interchange of data within and among space agencies.

SFDU data products may be viewed as containing application data (that is the data which is of
primary interest, e.g., actual measurements) and data description information (that is the
information telling how the application data are formatted).

The data description information shall be provided in a form that is understandable by the
agencies involved in the data interchange. That is the reason why the CCSDS must provide
some recommendations for the definition of standard description languages. EAST is one of
the recommended languages.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 1-2 May 1997

1.4 DOCUMENT STRUCTURE

The Recommendation is structured as follows:

− Section 2 provides an overview of the EAST language.

− Section 3 specifies the EAST language and defines its usage in Data Descriptions.

− Section 4 lists the EAST reserved keywords.

− Annex 0 contains acronyms and the glossary of terms used in this document.

− Annex 0 defines the character set to be used in an EAST data description, as well as a
predefined type called CHARACTER.

− Annex 0 provides the EAST formal specification using a simple variant of the Backus-
Naur-Form (BNF).

− Annex 0 lists the main differences between the Ada programming language and EAST.

− Annex 0 lists the informative references.

1.5 DEFINITIONS

1.5.1 TERMS

The terms used throughout this document are listed in annex A. They are also explained in
the text when they are first used.

1.5.2 NOMENCLATURE

The following conventions apply throughout this Recommendation:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 1-3 May 1997

1.5.3 CONVENTIONS

This document uses syntax diagrams to illustrate the syntax of the EAST constructs.
Components of a construct are called elements. The following conventions are used:

a) Elements that are presented in bold characters in a circle are reserved keywords,
delimiters, or literals.

b) The item named on the left of the ::= symbol is the item being defined.

c) The diagram on the right of the ::= symbol is the corresponding definition.

d) A vertical branch represents a choice.

e) A repetition is indicated by a loop-back covering the object to be repeated.

f) If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey
some semantic information. For example, an “Integer Identifier” is an Identifier; i.e.,
the definition of the category Identifier applies, but the reader has additional semantic
information (it is an integer).

The following example presents a diagram specifying the declaration of Item A. Item A is
defined as first a keyword (“type”), then followed by an italicized Item B (already defined, and
known as Item B), then followed by a keyword (“is”) and a delimiter (“(”). Then this
structure is followed by a choice between Items B and C. The choice may be repeated any
number of times, each time a delimiter (“,”) is inserted. The structure is ended by two
delimiters (“)” and “;”).

::= type is) ;

,

(
Item A

Declaration

Italicized
Item B

Item C

Item B

Figure 1-1: Example of Syntax Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 1-4 May 1997

The syntax of the language is described using a simple variant of Backus-Naur-Form with the
following conventions:

a) Boldface words are used to denote reserved keywords.

b) Square brackets enclose optional items.

c) Braces enclose a repeated item. This item may appear zero or more times.

d) A vertical bar separates alternative items unless it occurs immediately after an opening
brace ({): in this case it represents the character ‘vertical bar’.

e) If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey
some semantic information. This facility used for the BNF intends to assimilate every
element like <italicized_part_name> to the previously defined element <name>.

The following example presents the definition of Item A using a simple variant of BNF. Item
A is defined as first a keyword (“type”), then followed by an italicized Item B (already
defined, and known as Item B), then followed by a keyword (“is”) and a delimiter (“(”). The
structure is followed by a choice. The choice may be repeated any number of times, each time
a delimiter (“,”) is inserted. The structure is ended by two delimiters (“)” and “;”). The
choice is between Items B and C.

<Item A> ::= type <Italicized_Item B> is (<choice> { , <choice> }) ;
<choice> ::= <Item B> | <Item C>

Example 1-1: Example of BNF

In the case of any confusion, the syntax diagram and the associated text are always the
reference for the EAST syntax, and not the BNF.

This document uses examples to illustrate the EAST. The following conventions are used in
the examples:

a) bold characters denote reserved keyword or delimiters;

b) user type names or user variable names are provided using uppercase letters, although
EAST is not a case-sensitive language.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 1-5 May 1997

1.6 REFERENCES

The following documents contain provisions which, through reference in this text, constitute
provisions of this Recommendation. At the time of publication, the editions indicated were
valid. All documents are subject to revision, and users of this Recommendation are
encouraged to investigate the possibility of applying the most recent editions of the documents
indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS
Recommendations.

[1] Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1:
Latin Alphabet No. 1. International Standard, ISO 8859-1:1987. Geneva: ISO, 1987.

[2] Information Processing—Universal Multiple-Octet Coded Character Set (UCS).
International Standard, ISO/IEC 10646-1:1993.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 2-1 May 1997

2 OVERVIEW

2.1 DESIGN AIMS

EAST was designed with three overriding concerns: data description capabilities, human
readability, and computer interpretability.

The need for data description languages that supply complete and non-ambiguous information
about the format and the nature of the described data is well established.

Any user must be able to understand descriptions of data, with a minimal effort. Error-prone
notations have been avoided, and the syntax of the EAST language avoids the use of cryptic
forms in favor of more English-like constructs.

EAST is a formal language and not a natural language: it is a machine compilable (or
interpretable) language. The formal nature of EAST allows the control of data descriptions
and the interpretation of data in an automated fashion.

2.2 STRUCTURE OF AN EAST DESCRIPTION

An EAST Data Description Record (DDR) includes a syntactic, and in some way semantic,
description of the data called a logical description, which is followed by a physical description.
The physical description makes possible the interpretation of the actual bit patterns
encountered on the medium. Each description part of a DDR consists of an EAST unit, called
a package: one for the logical part and another one for the associated physical part.

The logical part of an EAST description includes:

− a logical description of all components of the exchanged data (see 3.2.1 and 3.2.2);

− their size in bits (see 3.2.4.1);

− their location within the set of the described data (see 3.2.4.3).

The physical part of an EAST description includes:

− the representation of some basic data types (enumeration, integer, and real) defined in
the logical description and dependent on the machine that has generated the data (see
3.3.3);

− the array organization (first-index-first or last-index-first) used by the generating
machine (see 3.3.1);

− the octet and bit organization on the medium (high-order-first or low-order-first—see
3.3.2).

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 2-2 May 1997

A DDR created using the EAST Language has the following structure:

Data Description Record

package name_of_the_logical_description is

Logical Description (see 3.2)

end name_of_the_logical_description ;

package name_of_the_physical_description is

Physical Description (see 3.3)

end name_of_the_physical_description ;

The logical description always precedes the physical description. The logical and the physical
packages are mandatory even if the content of the physical one can be empty (see section 3.3).

The two part design of the DDR is intended to allow interchangeable physical description
parts for one logical description part, provided that the length of fields in bits in the logical
description are supported by field lengths of the same number of bits in the physical
description part. For example, a 32 bit real number on a IEEE architecture has a physical
description different from the one on a 1750 architecture, although lengths in bits of each field
are equal. Note that the representations written to an exchange medium do not have to be the
ones typically supported by the writing machine.

The data block associated with the DDR contains one or more complete sets of data.
The DDR describes a single set only and is repetitively applied to fully interpret the
data block.

2.3 LANGUAGE SUMMARY

An EAST description is composed of two units, called packages. The first one is a logical
description and the second one is a physical description of the data. The logical part of an
EAST description provides syntactic information and in some way semantic information, i.e.,
the information needed by a user to understand the data he has to deal with. The physical part
of an EAST description provides a bit-level description that ensures the non-ambiguous
interpretation of the data.

The syntax used in each of the two packages is based on the type and object concept. A type
is a model, defined once, that is used to create many occurrences (objects) of the models.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 2-3 May 1997

Every data item described in an EAST description is an object. An object in the language has
a type, which characterizes a set of values. The basic classes of types are scalar types
(comprising enumeration and numeric types, describing single elements), and composite types
(comprising array and record types, describing sequences of objects).

A type has a name: if well chosen, this name is a way to provide the meaning of the model
(e.g., the type DATE may describe a CCSDS date). An object has a name also: this name is a
way to provide (if any) the particularity of the occurrence (e.g., the object
DATE_AT_THE_BEGINNING_OF_THE_ORBIT of the type DATE may represent a
particular date). The name used to identify a type or an object can be any identifier except for
an EAST reserved keyword (reserved keywords are provided in section 4).

An enumeration type defines an ordered set of distinct enumeration literals; for example, a
Boolean type defines two enumeration literals (TRUE and FALSE). The enumeration type
CHARACTER is predefined and given in section 3.2.1.1.

Numeric types provide a means of describing whole numbers and real numbers. Whole
numbers are described using integer types. Real numbers are described using floating point
types, with relative bounds on the error.

Composite types allow definitions of structured objects with related components. The
composite types of the EAST language are arrays and records. An array is an object with
indexed components of the same type. The array type STRING is predefined and given in
section 3.2.1.1. A record is an object with named components of possibly different types.

A record may have special components called discriminants. Discriminants specify either
which of alternative record structures is to be used or the dynamic size of an internal array
(depending on the values of the discriminants).

The concept of type is refined by the concept of subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types and
arrays with a limited set of index values.

Representation clauses are used to specify the mapping between logical types and their
physical representations. For example, the user specifies that objects of a given type are
represented with a given number of bits, or the components of a record are represented using
a given storage layout.

NOTES

1 EAST is a subset of the Ada programming language (reference [E3]). EAST contains
therefore most of the declarative features of Ada, but no algorithmic features.

2 The declarative part of Ada normally defines the logical entities and sometimes some
of their physical characteristics. EAST extends the descriptive power of the Ada
language (using conventions in the physical packages). It is able to describe not only
the logical aspects of a data item, but also all its physical aspects.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-1 May 1997

3 DEFINITION OF THE EAST LANGUAGE

An EAST Data Description is a text composed of lexical elements, each composed of ASCII
characters: the 128 first characters of the Latin Alphabet No. 1. (see reference [1] and/or
annex 0). The rules of composition are given in 3.1. They are applicable to the whole EAST
DDR.

3.1 LEXICAL ELEMENTS

A lexical element is either a delimiter, an identifier (which may be a reserved word), a
numeric literal, a character string, a string literal, or a comment. The rules of composition are
given in this section.

3.1.1 SEPARATORS AND DELIMITERS

In some cases an explicit separator is required to separate adjacent lexical elements (namely,
when without separation, interpretation as a single lexical element is possible). A separator is
any of a space character, a control character, or the end of a line.

− A space character is a separator except within a comment, a string literal, or a space
character literal.

− Control characters other than horizontal tabulation are always separators. Horizontal
tabulation is a separator except within a comment.

− The end of a line is always a separator. What defines the end of a line is specified in
annex 0.

A delimiter is either one of the following special characters:

& ’ () * + , - . / : ; < = > |

or one of the following compound delimiters, each composed of two adjacent special
characters:

=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except
if this character is used as a character of a compound delimiter, or as a character of a
comment, string literal, character literal, or numeric literal.

The remaining forms of lexical elements are described in 3.1.2, 3.1.3 and 3.1.4.

3.1.2 COMMENTS

A comment starts with two adjacent hyphens and extends up to the end of the line. A
comment can appear on any line of a description.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-2 May 1997

3.1.3 IDENTIFIERS

Identifiers are used as names and also as reserved words. See below in Figure 3-1, the lexical
definition of an identifier:

::= _Identifier Letter

Letter

Digit

o

Figure 3-1: Identifier Definition Diagram

All characters of an identifier are significant, including any underline character inserted
between a letter or a digit and an adjacent letter or digit. Identifiers differing in the use of
corresponding upper and lower case letters are considered to be the same.

3.1.4 NUMERIC LITERALS

A numeric literal is either a decimal literal or a based literal. A decimal literal is a numeric
literal expressed in the conventional decimal notation (that is, the base is implicitly ten). A
based literal is a numeric literal expressed in a form that specifies the base explicitly. The base
can only be either two, eight, or sixteen.

In another way, a numeric literal is either an integer literal (decimal or based) or a real literal
(decimal or based).

a) decimal literals

::=
Decimal

Literal

Decimal

Literal

Integer

Decimal

Literal

Real

Figure 3-2: Decimal Literal Definition Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-3 May 1997

where Integer Decimal Literal and Real Decimal Literal are defined as in Figures 3-3
and 3-4:

::=Decimal

Literal

Integer Exponent

Integer

Figure 3-3: Integer Decimal Literal Definition Diagram

::= .Decimal

Literal
Integer Integer Exponent

Real

Figure 3-4: Real Decimal Literal Definition Diagram

where Integer and Exponent are defined as in Figures 3-5 and 3-6:

::= _Integer Digit Digit

Figure 3-5: Integer Definition Diagram

::=

+

E

Exponent

-

Integer

e

Figure 3-6: Exponent Definition Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-4 May 1997

An underline character inserted between adjacent digits of a decimal literal does not
affect the value of this decimal literal. The letter E of the exponent, if any, can be
written either in lowercase or in uppercase, with the same meaning. Leading zeros are
allowed. No space is allowed in a decimal literal.

12 0 1E6 123_456 -- integer literals
12.0 0.0 0.456 3.14159_26 -- real literals

1.3E-12 1.0E+6 -- real literals with exponent

Example 3-1: Decimal Literals

b) based literals

::=
Based

Literal

Based

Literal

Integer

Based

Literal

Real

Figure 3-7: Based Literal Definition Diagram

where Integer Based Literal and Real Based Literal are defined as in Figure 3-8 and
Figure 3-9:

::=

2

16

#8Based
Literal

Exponent
Based
Integer

Integer

Figure 3-8: Integer Based Literal Definition Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-5 May 1997

::=

2

16

#8Based
Literal

Exponent
Based

Integer

Real
.

Based
Integer

Figure 3-9: Real Based Literal Definition Diagram

where Based Integer is defined as in Figure 3-10:

::= _Based

Integer

Digit

Letter

Digit

Letter* *

*) See restriction below.

Figure 3-10: Based Integer Definition Diagram

The only letters allowed as extended digits are the letters A through F representing ten
through fifteen. Letters are allowed for a based integer only if the base of the literal of
which it is a part is 16. A letter in a based literal can be written either in lowercase or in
uppercase, with the same meaning. No space is allowed in a based literal.

2#1111_1111# 16#FF# 016#0FF# -- integer literals of value 255
16#E#E1 2#1110_0000# -- integer literals of value 224

16#F.FF#E+2 2#1.1111_1111_111#E11 -- real literals of value 4095.0

Example 3-2: Based Literals

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-6 May 1997

c) integer literals

::=
Integer

Literal

Decimal

Literal

Integer

Based

Literal

Integer

Figure 3-11: Integer Literal Definition Diagram

c) real literals

::=
Real

Literal

Decimal

Literal

Real

Based

Literal

Real

Figure 3-12: Real Literal Definition Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-7 May 1997

3.2 LOGICAL DESCRIPTION

The logical part of an EAST DDR is composed of:

− the logical description of the models of data (using type and subtype declarations for the
syntactic definition of the data, and using representation clauses for the specification of
their size in bits and their location within the set of data);

− the declaration of the data occurrences, i.e., the declaration of the described data items
(using object declarations).

The logical part of the Data Description Record consists of a package. This unit is introduced
by the keyword package, followed by the package name, and ends with “end package
name;”. The package name is an identifier (see 3.1.3).

Types are models, and objects are instances (or occurrences) of these models. Type
declarations describe therefore the structure of the data elements which may occur in the
described data, while the actual data occurrences are represented by the declaration of
variables and constants.

A type (except predefined type), a subtype or a constant (except predefined constant) must be
declared in the package before being used.

The declaration of variables must occur in the latter section of the logical description.
Constants may be declared in the type declaration section or in the section for the declaration
of variables: in the first section, they contribute to data models definition, while they
represent data occurrences in the second section.

The described data is a concatenation of elements in the order of the corresponding variables.
The types used in the declaration of variables must have been previously declared in the
package.

Figure 3-13 summarizes the content of the logical part of a DDR.

package logical_package_name is

Section for the Declaration of Types: Definition of the Data Models

− type declarations and representation clauses (see 3.2.1 and 3.2.4)
− subtype and constant declarations (see 3.2.2 and 3.2.3.2)

Section for the Declaration of Variables: Definition of the Data Occurrences

− variable and constant declarations (see 3.2.3.1 and 3.2.3.2)

end logical_package_name ;

Figure 3-13: Logical Part Structure

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-8 May 1997

3.2.1 TYPE DECLARATIONS

The type is characterized by a set of permissible values. Several classes of types exist: scalar
types (enumeration types, integer types, and real types), array types, and record types. Some
types are EAST predefined types (see 3.2.1.1); the other types are user defined types and
must be declared according to a specific syntax (see 3.2.1.2, 3.2.1.3, 3.2.1.4, 3.2.1.5 and
3.2.1.6).

3.2.1.1 Predefined Types

There are three predefined types provided by the EAST language: CHARACTER, STRING
and EOF. Predefined means that no previous declaration has to be made explicitly by the user
to use one of these types.

The predefined type CHARACTER is an enumeration type (see next subsection for the
enumeration definition syntax rules), whose values are the 256 characters of the 8-bit coded
Latin Alphabet No. 1. character set (see annex 0 and reference [1]).

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values in increments of one of any positive integer type.

The number of characters must be specified every time the type is used.

As an example STRING(1 .. 10) designates a 10 character string, while STRING(10 .. 22)
designates a 13 character string.

The predefined type EOF is exclusively used to declare a fictive end delimiter called EOF
Marker (see 3.2.3.2.2).

3.2.1.2 Enumeration Type

An enumeration type is defined as a set of enumeration literals. An enumeration literal is an
identifier or a character literal for one of the possible values of the type. Figure 3-14
illustrates the syntax of an enumeration type specification. Each enumeration literal yields a
different enumeration value.

::= type is) ;

,

(

Enumeration

Type

Declaration

Enumeration
Identifier

Enumeration
Literal

Figure 3-14: Enumeration Type Specification Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-9 May 1997

where the enumeration literal is defined as in Figure 3-15:

::=
Enumeration

Literal

Identifier

Character
Literal

Figure 3-15: Enumeration Literal Definition Diagram

The following example presents some enumeration type definitions.

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type STATE is (OFF , ON);
type ROMAN_DIGIT is (‘I’ , ‘V’ , ‘X’ , ‘L’ , ‘C’ , ‘D’ , ‘M’);

Example 3-3: Enumeration Type Declarations

3.2.1.3 Integer Type

An integer type is defined as a set of integer values specified by a range. Each bound of the
range is an integer constant identifier (see 3.2.3.2) or an integer literal (see 3.1.4). Note that
both bounds need not have the same integer type and that negative bounds are allowed. The
range L .. R specifies the value from L to R inclusive if the relation L <= R is true. A null
range is a range for which the relation R < L is true; no value belongs to a null range.

Figure 3-16 illustrates the syntax of an integer type specification.

::= is ;. .Type

Declaration

Integer

type range
Identifier
Integer

Identifier
Constant

Integer

Integer
Literal

Identifier
Constant

Integer

Integer
Literal

Figure 3-16: Integer Type Specification Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-10 May 1997

The following example presents an integer type, defined using integer literals (-10 and 10) and
an integer type, defined using a constant identifier (MAX).

type SMALL_INTEGER is range -10 .. 10;
type NUMBER is range 0 .. MAX;
-- where MAX could be defined as: MAX := 100;

Example 3-4: Integer Type Declarations

3.2.1.4 Real Type

Real types provide approximations to real numbers, with relative bounds on errors. The error
bound is specified as a relative precision by giving the required minimum number of significant
decimal digits. The range bounds are optional. When they are specified, they are either real
constant identifier (see 3.2.3.2) or real literal (see 3.1.4).

Figure 3-17 illustrates the syntax of a real type specification.

::= is

;. .

Type

Declaration

Real

Identifier

Real
digitstype

Number

of Digits

range

Constant
Identifier

Real

Real
Literal

Constant
Identifier

Real

Real
Literal

Figure 3-17: Real Type Specification Diagram

The following example presents some real type definitions.

type COEFFICIENT is digits 10 range 0.1 .. 1.0;
type REAL is digits 15;

Example 3-5: Real Type Declarations

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-11 May 1997

NOTE − The range is optional in a real type declaration. If the real type declaration
specifies no range, then the range is supposed to be the largest range that can be
implemented within the specified number of bits (see 3.2.4.1) accommodating the
number of significant digits. When unspecified, the range will depend on the
convention used to represent the binary values of the real type (see 3.3.3.1).

3.2.1.5 Array Type

An array type is a composite type consisting of components that have the same type. The
name for a component of an array uses one or more index values belonging to specified
discrete types.

A discrete type is either an enumeration type or an integer type.

An array type is characterized by:

− an ordered list of indices;
− the type of each index;
− the lower and upper bound for each index;
− the type of the components.

The order of indices is significant. The index type and component type declarations must
precede the array type declaration that makes use of them, except if one of these types is a
predefined type of the EAST language.

A one-dimensional array has a distinct component for each possible index value. A multi-
dimensional array has a distinct component for each possible sequence of index values that can
be formed by selecting one value for each index position within the list of indices (in the given
order).

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-12 May 1997

The possible values for a given index are all the values between the lower and upper bounds,
inclusive; this range of values is called the index range. Figure 3-18 illustrates the syntax of
an array type specification.

::= type is

;

(

,

)

of

Type
Declaration

Array

Identifier

Array
array

Specification

Index

Type

Identifier

Figure 3-18: Array Type Specification Diagram

An array type can be constrained (i.e., have a fixed number of elements) or unconstrained (i.e.,
have an undetermined number of elements), depending on the specification of the indices. In
multi-dimensional array types, the indices are either all determined or all undetermined.

An index is specified as follows:

::=

. .

< >

Specification

Index

Discrete Type
Identifier range

Constant

Identifier

Discrete

Enumeration

Literal

Constant

Identifier

Discrete

Enumeration

Literal

o

Figure 3-19: Index Specification Diagram

In the “..” notation, the first identifier or literal specifies the lower bound, while the second
one specifies the upper bound.

The “range <>” expression denotes an undetermined number of elements.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-13 May 1997

The following example defines array types, for which the number of elements is known: 100
characters in a line, and 7 states in a schedule.

type LINE is array(1 .. 100) of CHARACTER;
-- CHARACTER is an EAST predefined type
type SCHEDULE is array(DAY) of STATE;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

Example 3-6: Constrained Array Type Definitions

The following example defines array types, for which the number of elements is not known:
because of the definition of the integer type NUMBER, VECTOR may contain at a maximum
MAX reals, and at a minimum 0 real.

type VECTOR is array(NUMBER range <>) of REAL;
type MATRIX is array(NUMBER range <>, NUMBER range <>) of REAL;
-- NUMBER is an integer type defined in 3.2.1.3 as:
-- type NUMBER is range 0 .. MAX;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;

Example 3-7: Unconstrained Array Type Definitions

The actual number of elements must be specified every time an unconstrained array type is
used, while the number of elements must not be specified when a constrained array type is
used (because this number is already fixed by the type definition).

As an example, MATRIX(1 .. 512, 1 .. 512) designates a matrix which contains 512*512
elements.

If the lower bound of an index range is greater than the upper bound (i.e., if the index range is
zero), then the corresponding array row/column has no component.

NOTE − Ways of storing arrays and, therefore, which array index varies first are discussed
in section 3.3.1.

3.2.1.6 Record Type

A record type is a composite type consisting of a sequence of named components. EAST
forbids identical component names in a record. This sequence contains the declaration of each
component of the record type. Each declaration indicates the type of the component. Each
component type must have been previously defined.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-14 May 1997

The identifiers of all components of a record type must be distinct. Figure 3-20 illustrates the
syntax of a record type specification:

::= is

;

Type
Declaration

Record
type

Identifier
Record

Discriminant Specification

record

Variant Part Specification

Component

Declaration
end record

Figure 3-20: Record Type Specification Diagram

where a component declaration is specified as in Figure 3-21:

::= ;:Component
Declaration

Component
Identifier

Type

Identifier
o

Index
Constraint

Figure 3-21: Component Declaration Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-15 May 1997

An index constraint shall be present for an array component if the array type identifier
corresponds to an unconstrained array type. In this case, the constraint is specified as in
Figure 3-22:

::=

. .

,

Constraint
Index

Constant
Identifier

Discrete

Enumeration
Literal

Discrete Type or Subtype

Identifier

Constant
Identifier

Discrete

Enumeration
Literal

()

Figure 3-22: Index Constraint Diagram

The following example presents two record type definitions that consist only of simple
component declarations:

type COMPLEX is record
REAL_PART: REAL;
IMAGINARY_PART: REAL;

end record;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
type MEASUREMENT_BLOCK is record

TODAY: DAY;
TEMPERATURE: SMALL_INTEGER;
VOLUME: SMALL_INTEGER;
FIRST_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 .. 100);
SECOND_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 ..10);

end record;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
-- SMALL_INTEGER is an integer type defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;
-- VECTOR is an array type defined in 3.2.1.5 as:
-- type VECTOR is array (NUMBER range <>) of REAL;

Example 3-8: Record Type Definitions

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-16 May 1997

Some records may contain components of which the size or even the existence depends on the
value of another component, called a discriminant. The type of a discriminant must be
discrete. Figure 3-23 illustrates the syntax of a discriminant specification.

::= ():

;

Specification

Discriminant Discriminant
Identifier

Type

Identifier

Default

Value
:= o

Figure 3-23: Discriminant Specification Diagram

Figure 3-24 illustrates the syntax of a variant part, introduced by the presence of a
discriminant.

::= case isPart

Specification

Variant Discriminant

Identifier

=>

|

..

when

Value

Value Value

Component

Declaration

;=>when others
Component
Declaration

end case o

Part

Specification

Variant

null ;

Part

Specification

Variant

Figure 3-24: Variant Part Specification Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-17 May 1997

The “when others” clause is mandatory only if all the possible values of the discriminant are
not explicitly named before, in the variant part specification.

The following example presents a discriminant that conditions the existence of other
components:

type ACTIVITY(TODAY: DAY := MON) is record
case TODAY is

when SAT | SUN =>
SLEEPING: DURATION_IN_HOURS;
PLAYING_TENNIS: DURATION_IN_HOURS;
SWIMMING: DURATION_IN_HOURS;

when MON =>
RESTING_AFTER_WEEK_END: DURATION_IN_HOURS;

when others =>
WORKING: DURATION_IN_HOURS;

end case;
end record;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
-- DURATION_IN_HOURS is an integer type defined as:
-- type DURATION_IN_HOURS is range 0 .. 24;

Example 3-9: Record Type Definition with Discriminant

In this example, TODAY is a discriminant for the type ACTIVITY: other components of the
record might change depending on the value of TODAY.

The keyword case introduces the variant part, which consists of alternative lists of
components. The keyword when, followed by one or more values (separated by a vertical
bar) of the type of the discriminant of the variant part, introduces a list of components that are
present for the specified value(s) of the discriminant. The keyword others represents all the
possible values of the type of the discriminant that have not been taken into account explicitly
before (in this example, others is equivalent to TUE | WED | THU | FRI).

The following example presents a discriminant that conditions a size:

type SQUARE(LENGTH: NUMBER := 10) is record
MAT: MATRIX(1 .. LENGTH, 1 .. LENGTH);

end record;
-- NUMBER is an integer type defined in 3.2.1.3 as:
-- type NUMBER is range 0 .. MAX;
-- MATRIX is an array type defined in 3.2.1.5 as:
-- type MATRIX is array (NUMBER range <> , NUMBER range <>) of REAL;

Example 3-10: Record Type Definition with Discriminant

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-18 May 1997

In the previous example, LENGTH is a discriminant for the type SQUARE: the value of
LENGTH determines the size of the matrix. If LENGTH is less than 1 (i.e., LENGTH is
equal to 0), then the matrix has no element. If LENGTH is, for example, equal to 5, then the
matrix has 25 elements.

The EAST syntax requires a default value for each discriminant (if any) in a record type
declaration. A default value does not preclude any possible value for the discriminant of
corresponding record objects. In the case of the type “SQUARE”, the default value could
have been any allowed value for the integer type “NUMBER”, i.e., in the range 0 .. MAX.

Some records may contain components of which the size or the existence depend on the value
of a data item that is not part of the record: this data item is considered to be a discriminant
for the record, except that the occurrence of this discriminant is not in the record itself. Such
a discriminant is called a virtual discriminant.

The syntax of a virtual discriminant is the same as a “classic” discriminant (see Figure 3-23).
The only difference is that the discriminant identifier begins in this case with “VIRTUAL_”
and does not represent any data item occurrence.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-19 May 1997

Figure 3-25 presents an example of virtual discriminant use; it describes a packet format.

Packet

Primary

Packet
Identification

Packet

Sequence

Control

Source

Data

Version
Number

Type_Id

Secondary
Header

Flag

Application
Process ID

Segmentation Source
Flag Sequence

Count

(3)

(1)

(1)

(11)

(2)
(14)

(16)

(variable) (variable)

(x) : Length in bits

Source

Data

Secondary

HeaderHeader

(48)

- Optional -

Length

[...]

discriminates

discriminates

Figure 3-25: Discriminants in a Packet Format

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-20 May 1997

This tree structure can be described using EAST type definitions as follows:

-- basic data types used in the first branch
type VERSION is (VERSION_1, VERSION_2);

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);

type PRESENCE_FLAG is (ABSENT , PRESENT);

type PROCESS_IDENTIFICATION is (WORKING , IDLE);

-- structuring type for the Packet Identification
type PACKET_IDENTIFICATION_TYPE is record

VERSION_NUMBER: VERSION;
TYPE_ID: PACKET_TYPE;
SECONDARY_HEADER_FLAG: PRESENCE_FLAG;
APPLICATION_PROCESS_ID: PROCESS_IDENTIFICATION;

end record;

-- basic data types used in the second branch
type STATUS is (CONTINUATION_SEGMENT,

FIRST_SEGMENT, LAST_SEGMENT, UNSEGMENTED_PACKET);

type COUNTER is range 0 .. 16383;

-- structuring type for the Packet Sequence Control
type PACKET_SEQUENCE_CONTROL_TYPE is record

SEGMENTATION_FLAG: STATUS;
SOURCE_SEQUENCE_COUNT: COUNTER;

end record;

-- basic data types used in the other branches
type NUMBER is range 0 .. 65535;

type OCTET is range 0 .. 255;

.../...

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-21 May 1997

.../...
-- structuring types
type DATA_ARRAY is array (NUMBER range <>) of OCTET;
type SECONDARY_HEADER_TYPE is array (1 .. 4) of OCTET;

type PRIMARY_HEADER_TYPE is record
 PACKET_IDENTIFICATION: PACKET_IDENTIFICATION_TYPE;
 PACKET_SEQUENCE_CONTROL: PACKET_SEQUENCE_CONTROL_TYPE;
 SOURCE_DATA_LENGTH: NUMBER;
end record;

type PACKET_FORMAT_TYPE(
VIRTUAL_SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT;
-- point to the secondary header flag located in the first branch
VIRTUAL_SOURCE_DATA_LENGTH: NUMBER := 256)
-- point to the source data length located in the third branch

is record
PRIMARY_HEADER: PRIMARY_HEADER_TYPE;
case VIRTUAL_SECONDARY_HEADER_FLAG is
 when ABSENT =>

SOURCE_DATA_0: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
 when PRESENT =>

SECONDARY_HEADER: SECONDARY_HEADER_TYPE;
SOURCE_DATA_1: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);

end case;
end record;

Example 3-11: Logical Description of the Packet Format

The two virtual discriminants “VIRTUAL_SECONDARY_HEADER_FLAG” and
“VIRTUAL_SOURCE_DATA_LENGTH” do not really exist in the exchanged data block.
They serve as a link between other data:

− VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the
SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block; it
conditions the existence of the SECONDARY_HEADER block. It serves as a link
between these two fields.

− VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the
SOURCE_DATA_LENGTH field in the PRIMARY HEADER; it conditions the size
of the SOURCE DATA block. It also serves as a link.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-22 May 1997

3.2.1.7 Type Summary

The following diagram presents the types that can be found in the logical part of an EAST
description:

type

integer

array

composite

unconstrained array

record

invariant record

scalar

constrained array

variant record

enumeration

CHARACTER *

STRING *

discrete real

*) EAST predefined type

Figure 3-26: Type Summary

Scalar types have a binary coding or an ASCII coding, according to their physical description
(see 3.3.3).

A variant record is a record that contains at least one discriminant. An invariant record
contains no discriminant.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-23 May 1997

3.2.2 SUBTYPE DECLARATIONS

A subtype of a given type is used to restrict the set of values of the initial type. The initial
type must be known at the subtype declaration time: either it is a predefined type of the
EAST language or it has been previously declared.

Figure 3-27 illustrates the syntax of a subtype declaration.

::= subtype is ;Subtype

Declaration

Subtype

Identifier

Type

Identifier

Enumeration
Constraint

Integer
Constraint

Real
Constraint

Index

Constraint

Figure 3-27: Subtype Declaration Diagram

The constraint for an enumeration subtype is defined in Figure 3-28.

::= range
Constraint

Enumeration . . ;Constant
Identifier

Enumeration

Character

Literal

Identifier
Literal

Enumeration

Constant
Identifier

Enumeration

Character

Literal

Identifier
Literal

Enumeration

Figure 3-28: Enumeration Constraint Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-24 May 1997

If a character literal used as range bound is not a printable character (as defined in annex 0),
its constant identifier is used (constants of the type CHARACTER are defined in annex 0 in a
table called ASCII).

The constant identifier for a character must be prefixed by “ASCII.”, in order to avoid any
confusion with other identifiers defined in the current description.

The following example defines some subtypes of CHARACTER:

subtype CAPITAL_LETTER is CHARACTER range ‘A’ .. ‘Z’;
-- the range bounds are printable

subtype LINE_FORMAT is CHARACTER range ASCII.HT .. ASCII.CR;
-- the range bounds are not printable

Example 3-12: Character Declarations

The constants of the type CHARACTER, which are specified in the ASCII table, are EAST
predefined constants.

The constraint for an integer subtype is defined in Figure 3-29.

::= ;range . .
Constraint

Integer

Integer
Literal

Constant

Identifier

Integer

Integer
Literal

Constant

Identifier

Integer

Figure 3-29: Integer Constraint Diagram

In the previous diagram, the first integer gives the lower bound and the second the upper
bound of the specified range.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-25 May 1997

The constraint for a real subtype is defined in Figure 3-30.

::= ;range . .digits
Real

Constraint

Number

of Digits

Constant
Identifier

Real

Real
Literal

Constant
Identifier

Real

Real
Literal

Figure 3-30: Real Constraint Diagram

In the previous diagram, the first real gives the lower bound and the second the upper bound
of the specified range.

The constraint for an array subtype or for a subtype of the predefined type STRING is defined
in Figure 3-22 (on page 3-15). In this diagram, the discrete literal in the range specification is
any integer (based or decimal integer) literal or any enumeration literal. In the same way, the
discrete constant identifier in the range specification is any integer or enumeration constant
(see 3.2.3.2).

The following example defines some subtypes:

subtype WEEK_END is DAY range SAT .. SUN ;
-- where DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
subtype VERY_SMALL_INTEGER is SMALL_INTEGER range -5 .. 5;
-- where SMALL_INTEGER is an integer type defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;
subtype MY_REAL is REAL range -9_999.999 .. 9_999.999;
-- where REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
subtype SMALL_MATRIX is MATRIX (1 .. 10 , 1 .. 10);
-- where MATRIX is an array type defined in 3.2.1.5 as:
-- type MATRIX is array (NUMBER range <>, NUMBER range <>) of REAL;
subtype NAME is STRING (1 .. 32);
-- where STRING is a predefined array type (see 3.2.1.1).

Example 3-13: Subtype Declarations

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-26 May 1997

3.2.3 OBJECT DECLARATIONS

An object is an entity that contains a value of a given type. A declared object is called a
constant if the reserved word constant appears in the object declaration. An object that is not
a constant is called a variable.

3.2.3.1 Declaration of Variables

The declaration of a variable uses the previous type, subtype, or constant declarations.
Variables correspond to the data that are to be exchanged. Figure 3-31 illustrates the syntax
for the declaration of a variable.

::= ;:
Variable

Declaration
Variable
Identifier

Type
Identifier

Figure 3-31: Variable Declaration Diagram

A variable declaration consists of only one identifier (the variable identifier) followed by the
identifier of the type that describes the corresponding data.

UPDATED_DATA: MEASUREMENT_BLOCK ;
-- MEASUREMENT_BLOCK is a record type defined in 3.2.1.6

Example 3-14: Variable Declaration

3.2.3.2 Declaration of Constants

The declaration of a constant must include an explicit initialization, except for the EOF
Marker declaration (see 3.2.3.2.2). This declaration guarantees that the corresponding object
value cannot be modified after initialization. Figure 3-32 illustrates the syntax of a constant
declaration.

::= ;: constant :=Constant
Declaration

Constant
Identifier

Type
Identifier Value

Figure 3-32: Constant Declaration Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-27 May 1997

A constant declaration consists of only one identifier (the constant identifier) followed by the
reserved word constant, an optional identifier for the constant type, and the value of the
constant.

FIRST_DAY_OF_THE_WEEK: constant DAY := MON;

Example 3-15: Constant Declaration

The value of a constant can be specified as a static expression, combining other constant
values and operators (‘+’, ‘*’, ‘**’, ‘-’, ‘/’, ‘(’ and ‘)’).

‘+’ and ‘-’ are unary or binary operators (addition and subtraction). ‘*’, ‘/’ and ‘**’ are
binary operators: ‘*’ is the multiplication operator, ‘/’ is the division operator, ‘**’ is the
exponentiation operator. ‘(’ and ‘)’ are used to specify an explicit precedence for the
expression evaluation.

Constants may be declared either in the section for the declaration of types or in the section
for the declaration of variables (see Figure 3-13). In the first case, they contribute to data
model definitions while they represent, in the second case, some special data occurrences
called markers.

The first definition of a variable within the logical description part delimits the two sections.
Any declaration that occurs before the first variable definition belongs to the section for the
declaration of types. Any declaration that occurs after the first variable definition (including
the first variable declaration itself) belongs to the section for the declaration of variables.

3.2.3.2.1 Constants in the Section for the Declaration of Types

A constant that is declared in the section for the declaration of types can be used:

− in type or subtype declarations for the specification of range bounds,

− in constant declarations for the specification of the values.

In this case, the constant is either an integer constant, a real constant, or an enumeration
constant, the end objective of the constant being its use as a range bound.

A number declaration is a special form of a constant declaration, where no type is specified.

PI: constant := 3.14159_26536; -- a real number
MAXIMUM: constant := 500; -- an integer number
NUMBER_OF_VALUES_OF_AN_OCTET: constant := 2**8; -- the integer 256

Example 3-16: Number Declarations

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-28 May 1997

3.2.3.2.2 Markers: Constants in the Section for the Declaration of Variables

A marker declaration is a special form of a constant declaration, where the type of the
constant is mandatory and occurs within the section for the declaration of variables.

A marker is used to delimit the end of the repetition of an element. Its declaration occurs
after the declaration of a variable. This variable that is declared immediately before the
constant occurs an undetermined number of times, the last instance being followed by the
constant value.

A marker is a constant which should be unambiguously recognized. The type of a marker is
therefore restricted to integer type, enumeration type, character type, or character string type.

The following example represents a set of values, the number of values being unspecified.
The end of the set occurs when the character string “END” is encountered within the data.

VALUE : COEFFICIENT; -- COEFFICIENT is a real type defined in 3.2.1.4 as:
-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;

END_OF_COEFFICIENTS : constant STRING := “END”;

Example 3-17: Marker Declaration

The element of a repetition delimited by a marker can only be a variable.

The presence of the EOF marker implies that the previous element is repeated until the File
Management System returns an “end of file” indication.

The following convention is adopted: the type of the Marker is an EAST predefined type,
called EOF. No explicit value is associated with this constant since this value is unknown.
This is the only case of a constant declaration where the value is absent.

NOTE − The EOF marker can only be used once in an EAST description. It is the last
declaration in the logical description part.

The next example presents the description of a data file that contains a header and n values (n
being undetermined).

HEADER : HEADER_TYPE; -- any record type

VALUE : COEFFICIENT; -- COEFFICIENT is a real type defined in 3.2.1.4 as:
-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;

END_OF_COEFFICIENTS : constant EOF ;

Example 3-18: EOF Marker Declaration

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-29 May 1997

3.2.4 REPRESENTATION CLAUSES

Concerning the descriptive features, the representation clauses are one of the most significant
facilities offered by EAST. The representation clauses specify the mapping between the
logical types of the language and their physical representation. EAST provides the length
clauses, the enumeration representation clauses, and the record representation clauses.

A representation clause immediately follows the type whose storage it describes. A
representation clause is mandatory in a logical data description, except for variable-sized
components, for which the representation cannot be known.

3.2.4.1 Length Clauses

A length clause specifies the number of bits that data of a particular type occupy in storage.
Length clauses must be provided for enumeration, integer, and real types. Length clauses
must also be provided for composite types every time it is possible, i.e., every time the size of
the composite type (array or record) is known. In such case, this size is the size of the whole
type. Figure 3-33 illustrates the syntax of a length clause declaration.

::= ;for ' usesize

Declaration

Length
Clause

Type
Identifier

Number
of bits

Figure 3-33: Length Clause Specification Diagram

The following example presents type declarations with their associated length clauses:

type VALUE is range 0 .. 500;
for VALUE’size use 16; -- bits

type COLUMN is array(1 .. 10) of VALUE;
for COLUMN’size use 160; -- 10 times 16 bits

Example 3-19: Length Clause Declarations

If the elements of the described array are not contiguous, the unused space between elements
must be described explicitly. This results in contiguous elements containing unused space.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-30 May 1997

The following example presents an array which contains values and spare fields (for alignment
purpose).

type VALUE is range 0 .. 500;
for VALUE’size use 16; -- bits

type OCTET is range 0 .. 255;
for OCTET’size use 8;

type SPARE is array (1 .. 2) of OCTET;
for SPARE’size use 16;

type ELEMENT is record
A_VALUE: VALUE;
A_SPARE: SPARE;

end record;
for ELEMENT’size use 32;

type COLUMN is array(1 .. 10) of ELEMENT;
for COLUMN’size use 320; -- 10 times 32 bits

Example 3-20: Explicit Description of Unused Space

3.2.4.2 Enumeration Representation Clauses

An enumeration representation clause specifies the bit pattern for the binary representation of
the value associated with each literal of an enumeration type. An enumeration representation
clause is optional.

If an enumeration representation clause is provided, each literal of the enumeration type must
be provided with a unique bit pattern. The integer values (corresponding to the given bit
pattern) specified for the enumeration type must satisfy the predefined ordering relation of the
type; i.e., they must increase.

If no enumeration representation clause is provided for a binary enumeration type, default
integer codes are presumed: the value of the first listed enumeration literal is zero; the value
for each other enumeration literal is one more than for its predecessor in the list.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-31 May 1997

Figure 3-34 illustrates the syntax of an enumeration representation clause declaration:

::= for) ;

,

(use =>
Enumeration

Clause

Declaration

Enumeration
Identifier

Identifier Value

Figure 3-34: Enumeration Clause Specification Diagram

The integer value, specifying the mapping with bit pattern, can be expressed using the binary,
octal, decimal or hexadecimal notation. The syntax for a binary, octal, or hexadecimal value
is: base # value#.

type CODE is (ADD , SUB , MUL , LDA , STA , STZ);
for CODE use (ADD => 2#1#, SUB => 2#10#,

MUL => 2#11#, LDA => 2#1000#,
STA => 2#11000#, STZ => 2#11111#);

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY use (MON => 8#1#, TUE => 8#2#, WED => 8#3#,

THU => 8#4#, FRI => 8#5#, SAT => 8#6#, SUN => 8#7#);

type STATE is (OFF , ON);
for STATE use (OFF => 0 , ON => 1);

type SYNCHRONIZATION is (NOMINAL_SYNCHRO , INVERSE_SYNCHRO);
for SYNCHRONIZATION use (NOMINAL_SYNCHRO => 16#0C# ,

INVERSE_SYNCHRO => 16#F5#);

Example 3-21: Enumeration Clause Declarations

3.2.4.3 Record Representation Clauses

A record representation clause specifies the storage representation of records, that is, the
order, position, and size of record components (including discriminants, if any).

A record representation clause occurs immediately after the record type definition and before
the record length clause (if its size is known).

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-32 May 1997

A component clause specifies the storage position of a component, relative to the beginning of
the record. A component clause must be provided every time it is possible, i.e., every time the
exact location of the component is known (e.g., it is not possible for variable-sized
components).

If component clauses are given for all components, the record representation clause
completely specifies the representation of the record type.

If some component clauses are missing, the order of these components is specified as in the
record type definition.

The order of component clauses in a record representation clause is not significant.

A representation clause is mandatory for a discriminant, except for virtual discriminants which
cannot have a representation clause.

There is an overlap between distinct variants. The EAST syntax requires that a variant part is
declared after the fixed part of a record. If the variant part has a constant length, fixed
components are allowed to be physically located after the alternative components of the
variant: the actual location of the fixed components is specified using a record representation
clause.

Figure 3-35 illustrates the syntax of a component representation. The expression after the
keyword at indicates a relative distance to the start of the structure. This distance is
expressed in words, the length of a word being either 16 bits or 32 bits (see page 3-39 for the
declaration of the length). If distance is equal to 0, the range is specified relatively to the
beginning (i.e., location 0) of the record. The expressions after the keyword range are the
positions in bits relatively to the distance.

. . ;at range::=
Clause

Component Component

Identifier
Distance

Location

in bits

Location

in bits

Figure 3-35: Component Representation Clause Specification Diagram

Figure 3-36 illustrates the syntax of a record representation clause.

::= for recorduse end record ;Clause
Declaration

Record

Identifier
Record Component

Clause

Figure 3-36: Record Representation Clause Specification Diagram

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-33 May 1997

The next four examples illustrate the use of record representation clauses, in different cases:

− first case: everything is known (the size and the location of every component);

− second case: the number of elements of a component is not known at definition time,
and the size and the location of this variable component are therefore not known;

− third case: the global size of the record is known, but there are two alternatives for the
choice of the components;

− fourth case: the record contains alternatives for the choice of the components, followed
by a fixed (i.e., known) component.

Assuming the following definitions of the basic data types used in the four examples:

-- enumeration type definition
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY’size use 8;

-- integer type definitions
type MONTH is range 1 .. 12;
for MONTH’size use 8;
type YEAR is range 1900 .. 2100;
for YEAR’size use 16;
type NUMBER is range 1 .. 10;
for NUMBER’size use 8;
type ALPHA is range 1 .. 10;
for ALPHA’size use 8;
type BETA is range 1 .. 10;
for BETA’size use 8;
type GAMMA is range 1 .. 10;
for GAMMA’size use 8;
type DELTA is range 1 .. 10;
for DELTA’size use 8;

-- real type definition
type VALUE is digits 5;
for VALUE’size use 32;

-- array type definition
type VECTOR is array(NUMBER range <>) of VALUE;

Example 3-22: Type Definitions

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-34 May 1997

The following example presents the case of a complete record representation clause. The
record representation clause is provided because the size and the location of every component
of the data structure are known.

First Record

Day Month Year Value

(8 bits) (16 bits) (32 bits)(8 bits)

Figure 3-37: First Tree Structure

This tree structure is described using the following declaration:

type FIRST_RECORD is record
THE_DAY_OF_MONTH: DAY;
THE_MONTH: MONTH;
THE_YEAR: YEAR;
THE_MEASUREMENT: VALUE;

end record;
for FIRST_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;
THE_MONTH at 0 range 8 .. 15;
THE_YEAR at 0 range 16 .. 31;
THE_MEASUREMENT at 0 range 32 .. 63;

end record;
for FIRST_RECORD’size use 64; -- 64 bits

Example 3-23: Complete Record Representation Clause Declaration

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-35 May 1997

The following example presents the case of an incomplete record representation clause.

Second Record

DayMonthYear Vector (1 .. Number)

(8 bits)(16 bits) (?) (8 bits)

Number

(8 bits)

Figure 3-38: Second Tree Structure

The number of measurements is not known at definition time. The size of the vector of
measurements is therefore not provided. The tree structure is described using the following
declarations:

type SECOND_RECORD(THE_NUMBER: NUMBER := 1) is record
THE_YEAR: YEAR;
THE_MEASUREMENT: VECTOR(1 .. THE_NUMBER);
THE_MONTH: MONTH;
THE_DAY_OF_MONTH: DAY;

end record;
for SECOND_RECORD use record

THE_NUMBER at 0 range 0 .. 7;
THE_YEAR at 0 range 8 .. 23;
-- no component clause for THE_MEASUREMENT,
-- for THE_MONTH nor for THE_DAY_OF_MONTH

end record;
-- no length clause for SECOND_RECORD type

Example 3-24: Incomplete Record Representation Clause Declaration

In this example, the length of “THE_MEASUREMENT” depends on the value of the
discriminant “THE_NUMBER”. No representation clause can be given for it. Nevertheless
the size is determined by the expression “THE_NUMBER times 32”, 32 being the size of the
basic element VALUE. The component “THE_MEASUREMENT” begins at bit 24. The
length of “THE_MONTH” is known but its location is not known at definition time. No
representation clause can be given for it. The component “THE_MONTH” begins after the
end of “THE_MEASUREMENT”. In the same way, the length of “the_day_of_month” is
known, but its location is not known at definition time. No representation clause can be given
for it. The component “THE_DAY_OF_MONTH” begins after the end of “THE_MONTH”.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-36 May 1997

The following example gives the case of a complete record representation clause, where some
components overlap:

Third Record

Day Month Year

(8 bits) (16 bits)(8 bits) Value

(32 bits)
Alpha
(8 bits)

Beta
(8 bits)

Gamma
(8 bits)

Delta
(8 bits)

Figure 3-39: Third Tree Structure

The size of the record is known at definition time: all the alternatives have the same length
(32 bits if THE_DAY_OF_MONTH is equal MON, and 4*8 bits if THE_DAY_OF_MONTH
is equal something else). The location of every component is known.

type THIRD_RECORD(THE_DAY_OF_MONTH: DAY := MON) is record
THE_MONTH: MONTH;
THE_YEAR: YEAR;
case THE_DAY_OF_MONTH is
 when MON =>

THE_MEASUREMENT: VALUE; -- 32 bits
 when others =>

THE_ALPHA_VALUE: ALPHA; -- 8 bits
THE_BETA_VALUE: BETA; -- 8 bits
THE_GAMMA_VALUE: GAMMA; -- 8 bits
THE_DELTA_VALUE: DELTA; -- 8 bits

end case;
end record;
for THIRD_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;
THE_MONTH at 0 range 8 .. 15;
THE_YEAR at 0 range 16 .. 31;
THE_MEASUREMENT at 0 range 32 .. 63;
THE_ALPHA_VALUE at 0 range 32 .. 39;
THE_BETA_VALUE at 0 range 40 .. 47;
THE_GAMMA_VALUE at 0 range 48 .. 55;
THE_DELTA_VALUE at 0 range 56 .. 63;

end record;
for THIRD_RECORD’size use 64; -- 64 bits

Example 3-25: Complete Record Representation Clause Declaration

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-37 May 1997

NOTE − The components “THE_MEASUREMENT” and “THE_ALPHA_VALUE”
cannot appear in the same record, so their storage locations can overlap.

The following example presents the case of a complete representation clause, where
components and associated representation clauses are not declared in the same order:

Fourth Record

Day Month

(8 bits) (8 bits)

Year

(16 bits)Value

(32 bits)
Alpha

(8 bits)

Beta

(8 bits)

Gamma

(8 bits)

Delta

(8 bits)

Figure 3-40: Fourth Tree Structure

The size of the record is known at definition time. The variant part has a constant length (32
bits). A fixed component is located after the variant part.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-38 May 1997

type FOURTH_RECORD (THE_DAY_OF_MONTH: DAY := MON) is record
THE_MONTH: MONTH;
THE_YEAR: YEAR;
case THE_DAY_OF_MONTH is
 when MON =>

THE_MEASUREMENT: VALUE; -- 32 bits
 when others =>

THE_ALPHA_VALUE: ALPHA; -- 8 bits
THE_BETA_VALUE: BETA; -- 8 bits
THE_GAMMA_VALUE: GAMMA; -- 8 bits
THE_DELTA_VALUE: DELTA; -- 8 bits

end case;
end record;
for FOURTH_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;
THE_MONTH at 0 range 8 .. 15;
THE_MEASUREMENT at 0 range 16 .. 47;
THE_ALPHA_VALUE at 0 range 16 .. 23;
THE_BETA_VALUE at 0 range 24 .. 31;
THE_GAMMA_VALUE at 0 range 32 .. 39;
THE_DELTA_VALUE at 0 range 40 .. 47;
THE_YEAR at 0 range 48 .. 63;

end record;
for FOURTH_RECORD’size use 64; -- 64 bits

Example 3-26: Complete Record Representation Clause Declaration

The data item of the type YEAR is declared before the variant part in the record type
declaration, but after the variant part in the record representation clause declaration.

The four previous examples are an illustration of the following rules:

1 The reasons for not providing a component representation clause are: the component
has a variable size or it follows a component that has no component representation
clause.

2 When no representation clause can be given for a component, its location is supposed
to be contiguous to the previous component.

3 A fixed component is allowed after the variant part if that part has a constant length,
i.e., if the location of the fixed component can be stated using a component
representation clause.

The storage location of a component, relative to the start of the record, has been expressed
until now in bits in the examples (the distance has been set to 0). For large structures, the
values of expressions given after the reserved word range can be huge.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-39 May 1997

The EAST syntax also allows one to express the relative position of a component in distance
to which a number of bits is added. For that purpose, EAST allows two units for the distance:
WORD_16_BITS and WORD_32_BITS, representing respectively a 16-bit word and a 32-bit
word.

WORD_16_BITS and WORD_32_BITS are two EAST predefined identifiers.

Distances are expressed in multiples of the selected unit as follows:

::= *Distance

Literal

Integer

Decimal

word_32_bits

word_16_bits

0

Figure 3-41: Distance Specification Diagram

NOTE − The integer decimal literal is the value of the distance expressed in the selected
unit, either word_32_bits or word_16_bits.

See below for the previous record representation clause written using the constant
WORD_32_BITS:

for THIRD_RECORD use record
THE_DAY_OF_MONTH at 0 * WORD_32_BITS range 0 .. 7;
THE_MONTH at 0 * WORD_32_BITS range 8 .. 15;
THE_YEAR at 0 * WORD_32_BITS range 16 .. 31;
THE_MEASUREMENT at 1 * WORD_32_BITS range 0 .. 31;
THE_ALPHA_VALUE at 1 * WORD_32_BITS range 0 .. 7;
THE_BETA_VALUE at 1 * WORD_32_BITS range 8 .. 15;
THE_GAMMA_VALUE at 1 * WORD_32_BITS range 16 .. 23;
THE_DELTA_VALUE at 1 * WORD_32_BITS range 24 .. 31;

end record;

Example 3-27: Record Representation Clause Using WORD_32_BITS

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-40 May 1997

3.3 PHYSICAL DESCRIPTION

The physical description part adds implementation information to the logical part. While the
logical part of the DDR describes the meaning of the exchanged data, the physical part
describes how the data are physically implemented on the medium.

The machine-dependent characteristics include:

− the representation of numerics;

− the way of storing arrays on the medium;

− the way of storing octets on the medium.

This physical part of the Data Description Record consists of a package. See below the
content of the physical part of a DDR.

package physical_package_name is

way of storing arrays (see 3.3.1)

way of storing octets (see 3.3.2)

actual scalar type representations (see 3.3.3)

association of basic type names with their actual representations (see 3.3.4)

end physical_package_name ;

The name of the physical package is an identifier (see 3.1.3) and must be different from the
name of the package giving the associated logical description.

The physical description part has to be considered to be the instance of a template. Thus, the
syntax used throughout this section is not justified or formally defined. An extended example
of the template is provided in section 3.3.5. The next sections (3.3.1 to 3.3.4) explain the
content of the template. Each time a declaration of the template must be used as it is, it is
called “fixed part of the physical description” as opposed to the declarations that change from
a description to another one.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-41 May 1997

Every part of the template is optional (see 3.3.5). There is no required ordering between the
different parts of the template.

3.3.1 WAY OF STORING ARRAYS

An array object on a medium consists of a sequence of components. For a multi-dimensional
array, i.e., an array with more than one index range, there are different ways to organize the
sequence: either the first index range varies first or the last index range varies first. The first
described way of storing arrays is called first_index_first, and the second one is called
last_index_first.

The way of storing arrays on the medium is described in the physical description by using an
enumeration type. See below the corresponding declaration:

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST,
LAST_INDEX_FIRST);

Fixed Part 3-1 of the Physical Description: Array Storage Method

Using this declaration, it is necessary to declare the actual way of storing arrays, for example:

ARRAY_STORAGE: constant ARRAY_STORAGE_METHOD :=
FIRST_INDEX_FIRST;

Example 3-28: Actual Array Storage Method

This declaration is applicable to the whole description.

By default, the array storage is FIRST_INDEX_FIRST.

3.3.2 WAY OF STORING OCTETS/BITS

The way of storing octets/bits determines the location of the Most Significant Bit (MSB) and
the Least Significant Bit (LSB) of a data element.

A machine is said to be big-endian or little-endian depending on whether the MSB is in the
lowest or highest addressed octet of the data element.

For a big-endian representation of a multi-octet data element, the MSB is in the first
transmitted octet, i.e., in the first octet on the medium, while it is in the last transmitted octet,
i.e., in the last octet on the medium, for a little-endian representation of a multi-octet data
element.

The big-endian representation for a data element can be viewed as storing the bits from most
to LSB order, and then keeping this same order when output to some medium.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-42 May 1997

The little-endian representation for a data element can be viewed as storing the bits from least
to MSB order, but then re-ordering the bits (from most to least significant) within each octet
when output to some medium.

This machine-dependent characteristic is very important for a correct interpretation of the
data. Its definition is given for multi-octet data elements, but is still applicable for every data
element, whatever its length and its position (on octet boundary or not) within the data set.

The following example presents the transmission of data elements for both kinds of machines.

Logically we have:

A

2 bits

B

3 bits

C

16 bits

D

n bits

A1 A2 B1 B2 B3 C1 C2 C3 C4 C13 C14 C15 C16 D1 D2 Dn

When writing onto a medium, the machine writes the bits of the current octet first so that the
contained data element bits are ordered from MSB to LSB while maintaining their relative bit
positions to one another.

Therefore, for a big-endian machine where the bits are stored MSB first, the bit values in
memory appear as follows:

A1 A2 B1 B2 B3 C1 C2 C3 C4C11..... C13 C14 C15 C16 D1 D2 ... Dn

21 20 22 21 20 215 214 213 21225...... 23 22 21 20 2n-1 2n-2 ... 20

The bits are transmitted towards the medium octet by octet in the following order:

A1 A2 B1 B2 B3 C1 C2 C3 then C4 C5 C6 ... C11 then C12 C13 ... D1 D2 D3 and so forth.

For a little-endian machine where the bits are stored LSB first, the bit values in memory appear
as follows:

A1 A2 B1 B2 B3 C1 C2 C3 C4C11... C13 C14 C15 C16 D1 D2 ... Dn

20 21 20 21 22 20 21 22 23210... 212 213 214 215 20 21 ... 2n-1

The bits are transmitted towards the medium octet by octet in the following order:

C3 C2 C1 B3 B2 B1 A2 A1 then C11 C10 C9 ... C4 then D3 D2 D1 C16 ... C12 and so forth.

Example 3-29: Octet Storage Possibilities

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-43 May 1997

See below the corresponding declaration:

type BIT_ORDER is (HIGH_ORDER_FIRST, -- big-endian representation
LOW_ORDER_FIRST); -- little-endian representation

Fixed Part 3-2 of the Physical Description: Bit Order

Using this declaration, it is necessary to declare the actual way of storing octets, for example:

OCTET_STORAGE: constant BIT_ORDER := HIGH_ORDER_FIRST;

Example 3-30: Actual Bit Order

This declaration is applicable to the whole description.

The description of the way of storing octets (using the type BIT_ORDER) is sufficient to fully
describe the organization on the medium (even at a bit level).

By default, the octet storage is HIGH_ORDER_FIRST.

3.3.3 REPRESENTATION OF SCALAR TYPES

Scalar types can be either binary encoded or ASCII encoded.

3.3.3.1 Binary Representation of Scalar Types

The way to determine the value of a numeric (integer or real), i.e., how to interpret its bit
pattern on the medium, depends on its binary representation.

The binary representation of a numeric indicates its bit pattern on the medium. It includes the
physical characteristics that may differ depending on the machine that has generated the
numeric.

No binary representation is provided for enumeration types, because they are mapped on
integers, for which the location of the bits from the MSB to the LSB are deduced from
another physical information item, called bit order (see 3.3.2). If necessary, negative values
are represented in a two’s complement form.

If a negative value is present in the enumeration list, then the sign bit is present in any data
occurrence of the enumeration type. If the sign bit is set, the two’s complement shall be used
to decode the integer value.

If all enumeration values are positive integers, then there is no sign bit and any data
occurrence of the enumeration must be considered to be an unsigned integer.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-44 May 1997

The binary representation of an integer includes the following characteristics:

− the sign convention, which indicates the complementation, if any;

− the bit ordering, which indicates the location of MSB to the LSB, the sign position, if
any, being the MSB.

The binary representation of a real includes the following characteristics:

− the sign position;

− the sign convention, if any;

− the location of the exponent;

− the bias, which is a constant chosen to make the sum of exponent value and bias which
is a non-negative number;

− the exponent base, which is the integer (two, ten or sixteen) raised to the exponent
power in determining the value of the represented number;

− the location of the mantissa.

It must additionally include the identifier of the convention of the generating machine,
“convention of the generating machine” being the method to reconstitute the real values from
the previously defined characteristics. An Authority and Description Identifier (ADID) is
associated with every registered convention. See reference [E5] for the list of conventions
and related ADIDs.

The conventions adopted in this document for the data representation on a medium are the
following:

− In multi-octet elements, the first octet is drawn in the leftmost position and is called
“Octet Zero”. Successive octets are assigned successively larger numbers.

− Within an octet or binary field (not a multiple of octets), the first bit is drawn in the
leftmost position and is called “Bit Zero”.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-45 May 1997

The following rule is applicable for a field representing an integer, an exponent or a mantissa
of a real: the bits of the field are not necessarily provided in the right order (MSB to LSB) on
the medium. The aim is to reconstitute the proper bit ordering (MSB to LSB). To achieve
that, the initial field might be divided into an ordered sequence of subfields for which the bit
ordering is respected in each of them. The order of the subfields provides the order of bits
from the MSB to the LSB of the whole field.

Bit number 0 1 2 3 4 5 6 7 8 9

Significance 26 25 24 23 22 29 28 27 21 20

The bit ordering for this field from the MSB to LSB is: 5-6-7-0-1-2-3-4-8-9. This can be
summarized using the previous rule in 3 subfields according to the bit numbers in the
following order: (5 , 7) - (0 , 4) - (8 , 9).

Example 3-31: Bit Ordering

Using the previous conventions and rules, the binary representation of numerics is described in
the corresponding physical description part. It contains:

− a fixed part declaring the types used to describe the representations
(INTEGER_PHYSICAL_DESCRIPTION and REAL_PHYSICAL_DESCRIPTION),
this part being always the same and present in any physical description part;

− a part declaring the actual representations used, i.e., a specific part, depending on the
nature of the numerics to be described.

type NATURAL_NUMBER is range 0 .. 65535;

type LOCATION_OF_SUBFIELD is -- subfields composing an integer or the
record -- exponent/mantissa of a real.

BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;
ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;

end record;

MAXIMUM_NUMBER_OF_SUBFIELDS: constant := 255;
type SUBFIELD_NUMBER is range

1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)
of LOCATION_OF_SUBFIELD;

Fixed Part 3-3 of the Physical Description: Location of Fields for Numerics

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-46 May 1997

NOTES

1 The MAXIMUM_NUMBER_OF_SUBFIELDS is set to 255. It is an arbitrary value
that is big enough to cover all the identified machine architectures (i.e., the number of
subfields that are necessary to locate the bits of an integer can be up to 255).

2 The upper bound of NATURAL_NUMBER is set to 65535. It is an arbitrary value
that seems to be large enough in this context.

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,
ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001,
FCSTC0002, FCSTC0003); -- this list is not exhaustive (see reference [E5])

type INTEGER_PHYSICAL_DESCRIPTION (
NUMBER_OF_SUBFIELDS: SUBFIELD_NUMBER := 1) is record
COMPLEMENT: SIGN_CONVENTION;
LOCATION: LOCATION_OF_FIELD (1 .. NUMBER_OF_SUBFIELDS);

end record;

type REAL_PHYSICAL_DESCRIPTION(
NUMBER_OF_SUBFIELDS_IN_EXPONENT: SUBFIELD_NUMBER := 1;
NUMBER_OF_SUBFIELDS_IN_MANTISSA: SUBFIELD_NUMBER := 1)

is record
CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;
SIGN_BIT_NUMBER: NATURAL_NUMBER;
COMPLEMENT: SIGN_CONVENTION;
EXPONENT_BASE: NATURAL_NUMBER;
BIAS: NATURAL_NUMBER;
LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (

1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);
LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (

1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);
end record;

Fixed Part 3-4 of the Physical Description: Binary Description for Numerics

Each time the bits of an integer or the bits of the exponent or mantissa are not contiguously
located on the medium from the MSB to the LSB (see Example 3-31), several subfields are
necessary to locate the bits. In these cases, BEGINNING_AT_BIT_NUMBER of the first
element of the array LOCATION_OF_FIELD is supposed to be the bit number of the MSB.
Bit numbers continue in sequence until ENDING_AT_BIT_NUMBER of the last element of
LOCATION_OF_FIELD, which is supposed to be the bit number of the LSB.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-47 May 1997

The actual representation of the numerics is given by the declaration of constants of the
previous record types (INTEGER_PHYSICAL_DESCRIPTION for the representation of
integers and REAL_PHYSICAL_DESCRIPTION for the representation of reals).

The actual representation of a numeric is therefore provided by a record value (i.e., the value
of the constant of the relevant record type: INTEGER_PHYSICAL_DESCRIPTION or
REAL_PHYSICAL_DESCRIPTION).

Figure 3-42 illustrates the syntax of a record value.

::=)

,

(= >
Record
Value Identifier

Component
Value

Component

Figure 3-42: Record Value Specification Diagram

In the case of the record types used in the physical part of an EAST description, the
component value is either an enumeration literal, an integer literal or an array value.

Figure 3-43 illustrates the syntax of an array value.

::=)

,

(= >
Array
Value Value

Index
Value

Component

Figure 3-43: Array Value Specification Diagram

The index value is an integer literal. In the case of the array types used in the physical part of
an EAST description, the component value is either an enumeration literal, an integer literal,
an array value, or a record value.

The following examples present real cases of two integers and a real that must be described.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-48 May 1997

A 16-bit signed integer with the following physical representation (big-endian representation):

0 7 8 15

octet 0 octet 1

 ↓ 214 20

Sign

− The sign position is bit 0.

− The bit ordering is (0,15), which means that the MSB is bit 1 (bit 0 being the sign bit)
and the LSB is bit 15.

Example 3-32: Bit Ordering for the Above 16-Bit Signed Integer

Using the types declared in the fixed part of the physical description, it is possible to declare
the actual binary representation of this integer. Assuming that for negative values the two’s
complement is used, the actual binary representation is given by the following declaration:

Binary_Representation_01: constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => 1 ,
COMPLEMENT => TWOS_COMPLEMENT,
LOCATION => (1 => (0,15)));

Example 3-33: Actual Binary Representation of the Above 16-Bit Signed Integer

In this example, the binary representation indicates that the sign bit is the first bit encountered
(bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on till the
sixteenth bit (this bit being the LSB of the integer).

In the same way, a 16-bit unsigned integer with the following physical representation (big-
endian representation):

0 7 8 15

octet 0 octet 1

 215 20

− The bit ordering is (0,15), which means that the MSB is bit 0 and LSB is bit 15.

Example 3-34: Bit Ordering for the Above 16-Bit Unsigned Integer

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-49 May 1997

Using the types declared in the fixed part of the physical description, it is possible to declare
the actual binary representation of this integer. The actual binary representation is given by
the following declaration:

Binary_Representation_02: constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => 1 ,
COMPLEMENT => UNSIGNED,
LOCATION => (1 => (0,15)));

Example 3-35: Actual Binary Representation of the Above 16-Bit Unsigned Integer

In this example, the binary representation indicates that the most significant is the first bit
encountered (bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on
until the sixteenth bit (this bit being the LSB of the integer).

If the range that is specified in the integer type definition (in the logical part of the EAST
description) allows negative values, then there is a sign bit, and the SIGN_CONVENTION
cannot be UNSIGNED. If this range specifies only positive values, then there can be a sign
bit (or not) according to the SIGN_CONVENTION. If there is no sign bit, the first bit
number of the first subfield really corresponds to the MSB.

A 32-bit real with the following physical representation (little-endian representation):

0 7 8 15 16 23 24 31

octet 0 octet 1 octet 2 octet 3

← Mantissa → ← Mantissa → ↓ ← Mantissa →
Exponent

↓ ← Exponent →
Sign

− The sign position is bit 24.
− The location of the exponent includes two subfields (25,31) and (16,16), which means

that the MSB of the exponent is bit 25 and the LSB is bit 16.
− The location of the mantissa includes three subfields (17,23), (8,15) and (0,7), which

means that the MSB of the mantissa is bit 17 and the LSB is bit 7.

Example 3-36: Bit Ordering for the Above 32-Bit Real

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-50 May 1997

Using the types declared in the fixed part of the physical description, it is possible to declare
the actual binary representation of this real. Assuming that the real is generated on a PC
(which uses the IEEE 754 convention, identified by FCSTC000, see reference[E5]), the actual
binary representation is given by the following declaration:

Binary_Representation_03: constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 2,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 3,
CONVENTION_USED => FCSTC000, -- IEEE 754
SIGN_BIT_NUMBER => 24,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 127,
LOCATION_OF_EXPONENT => (1 => (25,31),

2 => (16,16)),
LOCATION_OF_MANTISSA => (1 => (17,23),

2 => (8,15),
3 => (0,7)));

Example 3-37: Actual Binary Representation of a 32-Bit Real

In this example, the binary representation indicates that the most significant bit of the
exponent is the twenty-sixth bit encountered (bit 25). Then from bit 26 through bit 31 the bits
encountered are less significant, and bit 16 is the LSB of the exponent.

In the same way, the most significant bit of the mantissa is the eighteenth bit encountered (bit
17). Then from bit 18 through bit 23, and then from bit 8 through bit 15, and from bit 0
through bit 7, the bits encountered are less significant, bit 7 being the LSB of the mantissa.

NOTE − The name of the constant used to identify the binary representation
(Binary_Representation_01 or Binary_Representation_02) could be any identifier
(except a reserved keyword). The only restriction is that a constant identifier
cannot be defined twice in the physical part.

Reference [E5] provides the way of calculating real values for the conventions, mentioned in
the definition of LIST_OF_RECOGNIZED_CONVENTIONS.

3.3.3.2 ASCII Representation of Scalar Types

ASCII encoded types are sometimes used to increase the portability of the data. Enumeration
types, integer types, and real types can be encoded using character strings. An ASCII
encoded type is a character string type with a specific format, depending on the nature of the
type (enumeration, integer, or real).

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-51 May 1997

There is no difference (except the size) between the logical description of a binary type and
the logical description of an ASCII encoded type. The physical description specifies the actual
representation of the scalar types. By default, a type is a binary encoded type. An ASCII
representation must be associated with the type name, if the type is ASCII encoded.

The ASCII representation of an enumeration type provides all the character strings
associated with all the enumeration literals of the type. The character strings, which are the
coding values of the enumeration type, have all the same length
(NUMBER_OF_CHARACTERS). The set of the coding values is therefore represented by a
character string list, which is also an array of characters, dimensioned by the
NUMBER_OF_OCCURRENCES of the enumeration type and the
NUMBER_OF_CHARACTERS of every occurrence.

The ASCII representation of an enumeration uses the following types:

type STRING_LIST is array(NATURAL_NUMBER range <>,
NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (
NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;
NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record
REPRESENTATION: STRING_LIST (1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);
end record;

Fixed Part 3-5 of the Physical Description: ASCII Description for Enumeration Types

The number of characters used to encode the enumeration type must be the same for every
enumeration literal of the type. This number is known at definition time.

All characters (i.e., the 256 characters of the Latin Alphabet No. 1.—see reference [1] and/or
annex 0) are allowed and are significant, including the space character.

The physical representations of the enumeration literals are provided in the order of their
declaration in the logical part.

An enumeration type is either an ASCII encoded type (in this case, its ASCII representation
shall be present in the physical description part) or a binary encoded type (in this case, an
enumeration representation clause can be present in the logical description part). In any case,
enumeration representation clause and ASCII representation are exclusive: they must not be
associated with the same enumeration type.

Using the types declared in the fixed part of the physical description, it is possible to declare
the actual ASCII representation of the enumeration types.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-52 May 1997

For example, an enumeration type which has two permitted values: “WORKING” and
“IDLE”, identifying a process, can be described in the logical part as follows:

type PROCESS_IDENTIFICATION is (WORKING, IDLE);
for PROCESS_IDENTIFICATION’size use 56; -- bits, i.e., 7 characters

Example 3-38: ASCII Enumeration Type Logical Declaration

and in the physical part as follows:

ASCII_Rep_01: constant ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,
REPRESENTATION => (“WORKING” , “IDLE ”));

Example 3-39: ASCII Enumeration Type Physical Description

In this example, three space characters belong to the representation of the enumeration value
IDLE.

An ASCII Encoded Decimal Integer is a character string representing an integer value. The
format of the character string corresponding to an ASCII encoded decimal integer is described
in the Figure 3-44:

digit

space +

 -

space

Figure 3-44: ASCII Encoded Decimal Integer Format

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-53 May 1997

An ASCII Encoded Decimal Real is a string representing a real value. The format of the
character string corresponding to an ASCII encoded decimal real is described in the
Figure 3-45:

digitspace +

 -

...

space

digit

 E

 e

 D

 d

 +

 -

digit

Figure 3-45: ASCII Encoded Decimal Real Format

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

Only the normalized ASCII encoded numbers can be described using EAST. There is no
convention for the ASCII representation of infinite values (“+INF”, “-INF” or “+ ∞”, “- ∞”)
and no representation for “NaN” (Not a Number).

The ASCII representation of an integer or real type specifies the number of characters used
for the integer or real values. The ASCII representation of an integer or real uses the
following type:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record
NUMBER_OF_CHARACTERS: NATURAL_NUMBER;

end record;

Fixed Part 3-6 of the Physical Description: ASCII Description for Numerics

Using the types declared in the fixed part of the physical description, it is possible to declare
the actual ASCII representation of the numerics.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-54 May 1997

For example, a five-character ASCII decimal integer type can be described in the logical part
as follows:

type COUNTER is range -1 .. 16383;
for COUNTER’size use 40; -- bits, i.e., 5 characters

Example 3-40: ASCII Integer Type Logical Declaration

and in the physical part as follows:

ASCII_Rep_02: constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => 5);

Example 3-41: ASCII Integer Type Physical Description

For example, an 11-character ASCII decimal real type can be described in the logical part as
follows:

type KILOMETERS is digits 5;
for KILOMETERS’size use 88; -- bits

Example 3-42: ASCII Real Type Logical Declaration

and in the physical part as follows:

ASCII_Rep_03: constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => 11);

Example 3-43: ASCII Real Type Physical Description

NOTE − The name of the constant used to identify the ASCII representation
(ASCII_Rep_01 or ASCII_Rep_02 or ASCII_Rep_03) could be any identifier
(except a reserved keyword). The only restriction is that a constant identifier
cannot be defined twice in the physical part.

3.3.4 RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR TYPES
AND LOGICAL TYPES

As seen in 3.3.3, a binary or ASCII representation is provided for some basic types
(enumeration, integer, or real types) defined in the logical part of the DDR. The association
of a type name with the corresponding representation name also has to be provided in this
physical description part. See below how this association is implemented in EAST:

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-55 May 1997

− an enumeration type gives all the basic type names, which are previously defined in the
logical description part and which need a physical representation, by prefixing them with
“USER_TYPE_”:

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy ,
USER_TYPE_zzz, USER_TYPE_ttt);

− the different representations are declared as seen in 3.3.3.1 and 3.3.3.2:

Binary_Representation_01: constant INTEGER_PHYSICAL_DESCRIPTION
:= “value”; -- integer type

Binary_Representation_02: constant REAL_PHYSICAL_DESCRIPTION
:= “value”; -- real type

ASCII_Representation_01: constant
ASCII_NUMERIC_PHYSICAL_DESCRIPTION
:= “value”; -- integer or real type

ASCII_Representation_02: constant
ASCII_ENUMERATION_PHYSICAL_DESCRIPTION
:= “value”; -- enumeration type

... and so forth ...

− finally, the relation between the type names and their binary representations is specified
as follows:

type RELATION(choice: BASIC_TYPE_NAMES) is record
case choice is

when USER_TYPE_xxx =>
PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION

:= Binary_Representation_01;
when USER_TYPE_yyy =>
PHYS_yyy: REAL_PHYSICAL_DESCRIPTION

:= Binary_Representation_02;
when USER_TYPE_zzz =>
PHYS_zzz: ASCII_NUMERIC_PHYSICAL_DESCRIPTION

:= ASCII_Representation_01;
when USER_TYPE_ttt =>
PHYS_ttt: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION

:= ASCII_Representation_02;
and so forth ...

end case;
end record;

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-56 May 1997

3.3.5 TEMPLATE OF A PHYSICAL DESCRIPTION PART

This subsection gives an extended template for the physical description part definition. The
italicized part corresponds to the variable part of the description, i.e., what changes from a
physical part to another physical part.

package physical_package_name is

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST,
LAST_INDEX_FIRST);

ARRAY_STORAGE: constant ARRAY_STORAGE_METHOD :=
FIRST_INDEX_FIRST;

type BIT_ORDER is (HIGH_ORDER_FIRST, -- big-endian representation
LOW_ORDER_FIRST); -- little-endian representation

OCTET_STORAGE: constant BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is -- subfields composing an integer or the
record -- exponent/mantissa of a real.

BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;
ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;

end record;

MAXIMUM_NUMBER_OF_SUBFIELDS: constant := 255;
type SUBFIELD_NUMBER is range

1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)
of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,
ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000);

type INTEGER_PHYSICAL_DESCRIPTION (
NUMBER_OF_SUBFIELDS: SUBFIELD_NUMBER := 1) is record
COMPLEMENT: SIGN_CONVENTION;
LOCATION: LOCATION_OF_FIELD (1 .. NUMBER_OF_SUBFIELDS);

end record;

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-57 May 1997

type REAL_PHYSICAL_DESCRIPTION(
NUMBER_OF_SUBFIELDS_IN_EXPONENT: SUBFIELD_NUMBER := 1;
NUMBER_OF_SUBFIELDS_IN_MANTISSA: SUBFIELD_NUMBER := 1)

is record
CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;
SIGN_BIT_NUMBER: NATURAL_NUMBER;
COMPLEMENT: SIGN_CONVENTION;
EXPONENT_BASE: NATURAL_NUMBER;
BIAS: NATURAL_NUMBER;
LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (

1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);
LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (

1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);
end record;

type STRING_LIST is array(NATURAL_NUMBER range <>,
NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (
NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;
NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record
REPRESENTATION: STRING_LIST (1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);
end record;

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record
NUMBER_OF_CHARACTERS: NATURAL_NUMBER;

end record;

Binary_Representation_01: constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => 1 ,
COMPLEMENT => TWOS_COMPLEMENT,
LOCATION => (1 => (0,15)));

 Binary_Representation_02:constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1,
CONVENTION_USED => FCSTC000,
SIGN_BIT_NUMBER => 0,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 127,
LOCATION_OF_EXPONENT => (1 => (1,8),
LOCATION_OF_MANTISSA => (1 => (9,31)));

ASCII_Rep_01: constant ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,
REPRESENTATION => (“WORKING” , “IDLE”));

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-58 May 1997

ASCII_Rep_02: constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => 5);

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy ,
USER_TYPE_zzz , USER_TYPE_ttt);

type RELATION(choice: BASIC_TYPE_NAMES) is record
case choice is

when USER_TYPE_xxx =>
PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION

:= Binary_Representation_01;
when USER_TYPE_yyy =>
PHYS_yyy: REAL_PHYSICAL_DESCRIPTION

:= Binary_Representation_02;
when USER_TYPE_zzz =>
PHYS_zzz: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION

:= ASCII_Rep_01;
PHYS_ttt: ASCII_NUMERIC_PHYSICAL_DESCRIPTION

:= ASCII_Rep_02;
end case;

end record;
end physical_package_name;

Most of the declarations are optional. Indeed only the types that are used must be declared.
As an example, the type REAL_PHYSICAL_DESCRIPTION must be defined only if it is
used in the physical part, i.e., if at least one real type is defined in the logical part.

The following rules apply:

1 The array storage is optional (ARRAY_STORAGE_METHOD type and
ARRAY_STORAGE constant) if there is no multi-dimensional array in the logical
part, or if the method is FIRST_INDEX_FIRST (default value).

2 The octet storage is optional (BIT_ORDER type and OCTET_STORAGE constant) if
the method is HIGH_ORDER_FIRST (default value).

3 The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary
representation for real type to provide, i.e., if there is no binary real type in the logical
part.

4 The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary
representation for integer type to provide, i.e., if there is no binary integer type in the
logical part or if they are all considered to be unsigned integers or two’s-complement
signed integers.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 3-59 May 1997

5 The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if there
is no ASCII representation for enumeration type to provide, i.e., if there is no ASCII
enumeration type in the logical part.

6 The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is no
ASCII representation for integer or real type to provide, i.e., if there is no ASCII
integer type and no ASCII real type in the logical part.

7 The types BASIC_TYPE_NAMES and RELATION are optional if there is no
representation to provide.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 4-1 May 1997

4 RESERVED KEYWORDS

The following reserved keywords are not available for use as declared identifiers. Some of
them are reserved keywords of the Ada programming language (see reference [E3]), but not
of the EAST language. These words are also reserved in order to avoid any problem in the
case of an Ada application accessing the data. Other words are reserved identifiers of the
EAST language and not of the Ada programming language.

a) EAST and Ada Keywords

array digits is package type
at

end null range use
case record
constant for of when

others subtype

b) Other Ada Keywords

abort delta if pragma tagged
abs do in private task
abstract procedure terminate
accept else limited protected then
access elsif loop
aliased entry raise until
all exception mod rem
and exit renames while

new requeue with
begin function not return
body reverse xor

generic or
declare goto out select
delay separate

c) Pure EAST reserved identifiers

virtual_... word_32_bits word_16_bits

NOTE − Any identifier beginning with “virtual_” is reserved for virtual component
identifier only.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page 5-1 May 1997

5 CONFORMANCE

Data conforming to a Recommendation may be said to be in conformance at some identified
level. Identifying conformance levels provides a standard way to classify the required
capabilities of generating and receiving systems.

The Recommendation for Data Description Language EAST Specification recognizes only
one conformance level, and that is the entire specification. Therefore recipient systems which
are said to be in conformance to this Recommendation shall recognize the entire specification.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page A-1 May 1997

ANNEX A

ACRONYMS AND GLOSSARY

(This annex is part of the Recommendation)

This annex defines key acronyms and the glossary of terms which are used throughout this
Recommendation to describe the Data Description Language EAST.

A 1 ACRONYMS

ADID Authority and Description IDentifier
ASCII American Standard Code for Information Interchange
BNF Backus-Naur-Form
DDR Data Description Record
EAST Enhanced Ada SubseT
ISO International Standards Organization
LSB Least Significant Bit
LSO Least Significant Octet
MSB Most Significant Bit
MSO Most Significant Octet

A 2 GLOSSARY OF TERMS

ADID: in the context of EAST, an ADID is an identifier of the EAST Recommendation
within the CCSDS organization. See reference

[E2].

Array type: an array type is a composite type whose components are all of the same type.
Components are selected by indexing.

Based literal: a based literal is a numeric literal expressed in a form that specifies the base
explicitly.

Character literal: a character literal is formed by enclosing a graphic character between two
apostrophe characters.

Character type: a character type is an enumeration type that represents a character set.

Composite type: a composite type is a collection of components of the same or different
types.

Constant: a constant is a keyword that indicates that the identifier it qualifies has a unique
and specified value.

Constrained array: a constrained array is an array with a constant number of elements.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page A-2 May 1997

Discrete type: a discrete type is either an integer type or an enumeration type. Discrete
types may be used, for example, in case statements and as array indexes.

Discriminant: a discriminant is a component of a record type whose value influences the
structure of this record.

Elementary type: an elementary type does not have components.

Enumeration representation clause: an enumeration representation clause specifies the bit
pattern for each literal of the corresponding enumeration type.

Enumeration type: an enumeration type is defined by the list of its values, called
enumeration literals, which may be identifiers or character literals. All values for a given
enumeration type are different.

Length clause: a length clause specifies the amount of storage in bits associated with a type.

Literal: a literal is a value represented by its value itself instead of an identifier. A literal can
be specialized as a numeric literal, an enumeration literal, a character literal, or a string literal.

Marker: a marker is a constant value provided by a data description. This value will be
found in the data as an end-delimiter of a repetition.

Numeric literal: a numeric literal is the value of a number, expressed by means of characters.

Object: an object is either a constant or a variable. An object contains a value.

Predefined type: a predefined type is a type provided by EAST, that is, a type that can be
used in any EAST description without being previously declared.

Record representation clause: a record representation clause specifies the storage
representation of the record type on the medium, that is, the order, position and size of record
components (including discriminants, if any).

Record type: a record type is a composite type consisting of zero or more named
components, possibly of different types.

Representation clause: representation clauses specify the mapping between types of the
language and their physical representation.

Scalar type: scalar types are discrete types and real types.

String literal: a string literal is formed by a sequence of graphic characters (possibly none)
enclosed between two quotation marks used as string brackets.

Subtype: a subtype is a type together with a constraint, which constrains the values of the
type to satisfy a certain condition. The values of a subtype are a subset of the values of its
type.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page A-3 May 1997

Type: a type is a named set of characteristics. This name can be used to define sets of
values.

Unconstrained array: an unconstrained array is an array with a variable number of elements.

Variable: a variable is an identifier that represents a data item occurrence.

Variant part: a variant part of a record specifies alternative record components, dependent
on the discriminant of the record. Each value of the discriminant establishes a particular
alternative of the variant part.

Virtual Discriminant: a virtual discriminant is a discriminant that is not included in the
composite type that it discriminates.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-1 May 1997

ANNEX B

CHARACTER DEFINITION

(This annex is part of the Recommendation)

This annex contains the definition of the character set used for the EAST predefined type
CHARACTER.

This character set is a subset of the 16-bit Basic Multilingual Plane (BMP) of the ISO 10646
coded character set (reference [2]). This subset is defined as the first 256 characters (row00)
of the BMP, which corresponds to the ISO 8859-1, which is an 8-bit single-byte coded
graphic character set, also known as “Latin Alphabet No. 1” (reference [1]). The
corresponding codes are shown in the following tables. (The code for each character (Char)
is given in decimal (Dec), and hexadecimal (Hex).)

The whole of the ISO 8859-1 character set shown in the following tables is permitted in the
data that conforms to this Recommendation, although for interpretation purposes the
characters shaded in the following tables are ignored and should not be displayed or printed.

The use of an ISO 8859-1 encoding to represent the natural language also permits the
incorporation of tables and figures that can be drawn with the characters listed below. For
these figures or tables to be presented identically to any receiver, the interpretation of the
control characters (Vertical Tab, Horizontal Tab, Form Feed, Line Feed (also known as New
Line) and Carriage Return) must be standardized. The following rules apply:

a) A new line (positioning the next displayable character to the leftmost displayable
position and one line down) for presentation purposes is understood to occur upon
encountering the following conditions:

1) a Carriage Return, when it is not followed by a Line Feed;

2) a Carriage Return/Line Feed pair, regardless of what follows;

3) a Line Feed, when it is not followed by a Carriage Return;

4) a Line Feed/Carriage Return pair, regardless of what follows.

b) A Horizontal Tab character positions the next displayable character onto the next
character position that is a multiple of 8 (i.e., character positions 8, 16, 24, 32 etc.,
where the leftmost displayable character position is 0).

c) A Form Feed character positions the next displayable character to the leftmost
displayable position and down to the beginning of the next page. The definition of a
page is as defined by the local device (e.g., a new screen for a visual display unit (VDU)
or a new piece of paper for a printer).

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-2 May 1997

d) If the characteristics of the display device conflict with those of the data, for example,
line lengths may be greater than those permitted by the device, then some adjustment to
the layout of the data, as determined by the device, will occur. (Note also that some
devices may process or react to codes which this Recommendation specifies as being
ignored for presentation purposes.)

NOTE − If the alignment of the displayed characters is significant to the understanding of
the information, then a fixed space font should be used for presentation.

Some of the defined characters need some explanations: Space (SP), No_Break_Space
(NBSP), Soft_Hyphen (SHY) and Res.

a) A space might be interpreted as a graphic character, or a control character or both. As
a graphic character, its representation consists of no symbol, but it takes up display
space.

b) A No_Break_Space is a graphic character for which the representation consists of no
symbol. It shall be used when no break (new line) is allowed.

c) A Soft_Hyphen is a graphic character with the following representation: “-”. It occurs
when a word is broken up because of a new line.

d) Res represents a reserved control character. It is anyway ignored in EAST.

The language identified by the ADID = CCSD0010 is EAST. The character set to be used in
EAST descriptions is a subset of the ISO 8859-1 (reference [1]). This subset is defined as the
first 128 characters of the 8-bit single byte coded graphic character set (from the decimal
code 0 up to the decimal code 127 in the following tables).

NOTE − The character set used in EAST descriptions should not be confused with the
character set of the predefined type CHARACTER that describes occurrences of
data.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-3 May 1997

Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

NUL 0 00 space 32 20 @ 64 40 ` 96 60

SOH 1 01 ! 33 21 A 65 41 a 97 61

STX 2 02 “ 34 22 B 66 42 b 98 62

ETX 3 03 # 35 23 C 67 43 c 99 63

EOT 4 04 $ 36 24 D 68 44 d 100 64

ENQ 5 05 % 37 25 E 69 45 e 101 65

ACK 6 06 & 38 26 F 70 46 f 102 66

BEL 7 07 ‘ 39 27 G 71 47 g 103 67

BS 8 08 (40 28 H 72 48 h 104 68

HT 9 09) 41 29 I 73 49 i 105 69

LF 10 0A * 42 2A J 74 4A j 106 6A

VT 11 0B + 43 2B K 75 4B k 107 6B

FF 12 0C , 44 2C L 76 4C l 108 6C

CR 13 0D - 45 2D M 77 4D m 109 6D

SO 14 0E . 46 2E N 78 4E n 110 6E

SI 15 0F / 47 2F O 79 4F o 111 6F

DLE 16 10 0 48 30 P 80 50 p 112 70

DC1 17 11 1 49 31 Q 81 51 q 113 71

DC2 18 12 2 50 32 R 82 52 r 114 72

DC3 19 13 3 51 33 S 83 53 s 115 73

DC4 20 14 4 52 34 T 84 54 t 116 74

NAK 21 15 5 53 35 U 85 55 u 117 75

SYN 22 16 6 54 36 V 86 56 v 118 76

ETB 23 17 7 55 37 W 87 57 w 119 77

CAN 24 18 8 56 38 X 88 58 x 120 78

EM 25 19 9 57 39 Y 89 59 y 121 79

SUB 26 1A : 58 3A Z 90 5A z 122 7A

ESC 27 1B ; 59 3B [91 5B { 123 7B

FS 28 1C < 60 3C \ 92 5C | 124 7C

GS 29 1D = 61 3D] 93 5D } 125 7D

RS 30 1E > 62 3E ^ 94 5E ~ 126 7E

US 31 1F ? 63 3F _ 95 5F DEL 127 7F

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-4 May 1997

Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

Res 128 80 nbsp 160 A0 À 192 C0 à 224 E0

Res 129 81 ¡ 161 A1 Á 193 C1 á 225 E1

Res 130 82 ¢ 162 A2 Â 194 C2 â 226 E2

Res 131 83 £ 163 A3 Ã 195 C3 ã 227 E3

IND 132 84 ¤ 164 A4 Ä 196 C4 ä 228 E4

NEL 133 85 ¥ 165 A5 Å 197 C5 å 229 E5

SSA 134 86 | 166 A6 Æ 198 C6 æ 230 E6

ESA 135 87 § 167 A7 Ç 199 C7 ç 231 E7

HTS 136 88 ¨ 168 A8 È 200 C8 è 232 E8

HTJ 137 89 © 169 A9 É 201 C9 é 233 E9

VTS 138 8A ª 170 AA Ê 202 CA ê 234 EA

PLD 139 8B « 171 AB Ë 203 CB ë 235 EB

PLU 140 8C ¬¬ 172 AC Ì 204 CC ì 236 EC

RI 141 8D shy 173 AD Í 205 CD í 237 ED

SS2 142 8E ® 174 AE Î 206 CE î 238 EE

SS3 143 8F ¯ 175 AF Ï 207 CF ï 239 EF

DCS 144 90 ° 176 B0 Ð 208 D0 ð 240 F0

PU1 145 91 ± 177 B1 Ñ 209 D1 ñ 241 F1

PU2 146 92 ² 178 B2 Ò 210 D2 ò 242 F2

STS 147 93 ³ 179 B3 Ó 211 D3 ó 243 F3

CCH 148 94 ´ 180 B4 Ô 212 D4 ô 244 F4

MW 149 95 µµ 181 B5 Õ 213 D5 õ 245 F5

SPA 150 96 ¶ 182 B6 Ö 214 D6 ö 246 F6

EPA 151 97 · 183 B7 ×× 215 D7 ÷÷ 247 F7

Res 152 98 ¸ 184 B8 Ø 216 D8 ø 248 F8

Res 153 99 ¹ 185 B9 Ù 217 D9 ù 249 F9

Res 154 9A º 186 BA Ú 218 DA ú 250 FA

CSI 155 9B » 187 BB Û 219 DB û 251 FB

ST 156 9C ¼ 188 BC Ü 220 DC ü 252 FC

OSC 157 9D ½ 189 BD Ý 221 DD ý 253 FD

PM 158 9E ¾ 190 BE Þ 222 DE þ 254 FE

APC 159 9F ¿ 191 BF ß 223 DF ÿ 255 FF

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-5 May 1997

The following tables assign a name (according to the ISO standard) to each printable
character of the set.

Hex Name Hex Name

09 Horizontal Tab 3D Equals Sign
0A Line Feed 3E Greater Than Sign
0C Form Feed 3F Question Mark
0D Carriage Return 40 Commercial AT
20 Space 41 Capital Letter A
21 Exclamation Mark 42 Capital Letter B
22 Quotation Mark 43 Capital Letter C
23 Number Sign 44 Capital Letter D
24 Dollar Sign 45 Capital Letter E
25 Percent Sign 46 Capital Letter F
26 Ampersand 47 Capital Letter G
27 Apostrophe 48 Capital Letter H
28 Left Parenthesis 49 Capital Letter I
29 Right Parenthesis 4A Capital Letter J
2A Asterisk 4B Capital Letter K
2B Plus Sign 4C Capital Letter L
2C Comma 4D Capital Letter M
2D Hyphen, Minus Sign 4E Capital Letter N
2E Full Stop 4F Capital Letter O
2F Solidus 50 Capital Letter P
30 Digit Zero 51 Capital Letter Q
31 Digit One 52 Capital Letter R
32 Digit Two 53 Capital Letter S
33 Digit Three 54 Capital Letter T
34 Digit Four 55 Capital Letter U
35 Digit Five 56 Capital Letter V
36 Digit Six 57 Capital Letter W
37 Digit Seven 58 Capital Letter X
38 Digit Eight 59 Capital Letter Y
39 Digit Nine 5A Capital Letter Z
3A Colon 5B Left Square bracket
3B Semicolon 5C Reverse Solidus
3C Less Than Sign 5D Right Square Bracket

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-6 May 1997

Hex Name Hex Name

5E Circumflex Accent A1 Inverted Exclamation Mark
5F Low Line A2 Cent Sign
60 Grave Accent A3 Pound Sign
61 Small Letter a A4 Currency Sign
62 Small Letter b A5 Yen Sign
63 Small Letter c A6 Broken Bar
64 Small Letter d A7 Paragraph Sign, Section Sign
65 Small Letter e A8 Diaeresis
66 Small Letter f A9 Copyright Sign
67 Small Letter g AA Feminine Ordinal Indicator
68 Small Letter h AB Left Angle Quotation Mark
69 Small Letter i AC Not Sign
6A Small Letter j AD Soft Hyphen
6B Small Letter k AE Registered Trade Mark Sign
6C Small Letter l AF Macron
6D Small Letter m B0 Ring Above, Degree Sign
6E Small Letter n B1 Plus-Minus Sign
6F Small Letter o B2 Superscript Two
70 Small Letter p B3 Superscript Three
71 Small Letter q B4 Acute Accent
72 Small Letter r B5 Micro Sign
73 Small Letter s B6 Pilcrow Sign
74 Small Letter t B7 Middle Dot
75 Small Letter u B8 Cedilla
76 Small Letter v B9 Superscript One
77 Small Letter w BA Masculine Ordinal Indicator
78 Small Letter x BB Right Angle Quotation Mark
79 Small Letter y BC Vulgar Fraction One Quarter
7A Small Letter z BD Vulgar Fraction One Half
7B Left Curly Bracket BE Vulgar Fraction Three Quarters
7C Vertical Line BF Inverted Question Mark
7D Right Curly Bracket C0 Capital Latter A with Grave
7E Tilde C1 Capital Letter A with Acute Accent
A0 No-Break Space C2 Capital Letter A with Circumflex

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-7 May 1997

Hex Name Hex Name

C3 Capital Letter A with Tilde E2 Small Letter a with Circumflex
C4 Capital Letter A with Diaeresis E3 Small Letter a with Tilde
C5 Capital Letter A with Ring Above E4 Small Letter a with Diaeresis
C6 Capital Diphthong A with E E5 Small Letter a with Ring Above
C7 Capital Letter C with Cedilla E6 Small Diphthong a with e
C8 Capital Letter E with Grave Accent E7 Small Letter c with Cedilla
C9 Capital Letter E with Acute Accent E8 Small Letter e with Grave Accent
CA Capital Letter E with Circumflex E9 Small Letter e with Acute Accent
CB Capital Letter E with Diaeresis EA Small Letter e with Circumflex
CC Capital Letter I with Grave Accent EB Small Letter e with Diaeresis
CD Capital Letter I with Acute Accent EC Small Letter i with Grave Accent
CE Capital Letter I with Circumflex ED Small Letter i with Acute Accent
CF Capital Letter I with Diaeresis EE Small Letter i with Circumflex
D0 Capital Icelandic Letter ETH EF Small Letter i with Diaeresis
D1 Capital Letter N with Tilde F0 Small Icelandic Letter ETH
D2 Capital Letter O with Grave Accent F1 Small Letter n with Tilde
D3 Capital Letter O with Acute Accent F2 Small Letter o with Grave Accent
D4 Capital Letter O with Circumflex F3 Small Letter o with Acute Accent
D5 Capital Letter O with Tilde F4 Small Letter o with Circumflex
D6 Capital Letter O with Diaeresis F5 Small Letter o with Tilde
D7 Multiplication Sign F6 Small Letter o with Diaeresis
D8 Capital Letter O with Oblique F7 Division Sign
D9 Capital Letter U with Grave Accent F8 Small Letter o with Oblique Stroke
DA Capital Letter U with Acute Accent F9 Small Letter u with Grave Accent
DB Capital Letter U with Circumflex FA Small Letter u with Acute Accent
DC Capital Letter U with Diaeresis FB Small Letter u with Circumflex
DD Capital Letter Y with Acute Accent FC Small Letter u with Diaeresis
DE Capital Icelandic Letter THORN FD Small Letter y with Acute Accent
DF Small German Letter Sharp s FE Small Icelandic Letter THORN
E0 Small Letter a with Grave Accent FF Small Letter y with Diaeresis
E1 Small Letter a with Acute Accent

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-8 May 1997

The following tables assign an identifier to each character of the set. These identifiers are the
constant names of each character.

Hex Constant Name Hex Constant Name

00 NUL 20 Space
01 SOH 21 Exclamation
02 STX 22 Quotation
03 ETX 23 Number_Sign
04 EOT 24 Dollar_Sign
05 ENQ 25 Percent_Sign
06 ACK 26 Ampersand
07 BEL 27 Apostrophe
08 BS 28 Left_Parenthesis
09 HT 29 Right_Parenthesis
0A LF 2A Asterisk
0B VT 2B Plus_Sign
0C FF 2C Comma
0D CR 2D Hyphen or Minus_Sign
0E SO 2E Full_Stop
0F SI 2F Solidus
10 DLE 30 Digit_Zero
11 DC1 31 Digit_One
12 DC2 32 Digit_Two
13 DC3 33 Digit_Three
14 DC4 34 Digit_Four
15 NAK 35 Digit_Five
16 SYN 36 Digit_Six
17 ETB 37 Digit_Seven
18 CAN 38 Digit_Eight
19 EM 39 Digit_Nine
1A SUB 3A Colon
1B ESC 3B Semicolon
1C FS or IS4 3C Less_Than_Sign
1D GS or IS3 3D Equals_Sign
1E RS or IS2 3E Greater_Than_Sign
1F US or IS1 3F Question

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-9 May 1997

Hex Constant Name Hex Constant Name

40 Commercial_At 60 Grave
41 UC_A 61 LC_A
42 UC_B 62 LC_B
43 UC_C 63 LC_C
44 UC_D 64 LC_D
45 UC_E 65 LC_E
46 UC_F 66 LC_F
47 UC_G 67 LC_G
48 UC_H 68 LC_H
49 UC_I 69 LC_I
4A UC_J 6A LC_J
4B UC_K 6B LC_K
4C UC_L 6C LC_L
4D UC_M 6D LC_M
4E UC_N 6E LC_N
4F UC_O 6F LC_O
50 UC_P 70 LC_P
51 UC_Q 71 LC_Q
52 UC_R 72 LC_R
53 UC_S 73 LC_S
54 UC_T 74 LC_T
55 UC_U 75 LC_U
56 UC_V 76 LC_V
57 UC_W 77 LC_W
58 UC_X 78 LC_X
59 UC_Y 79 LC_Y
5A UC_Z 7A LC_Z
5B Left_Square_Bracket 7B Left_Curly_Bracket
5C Reverse_Solidus 7C Vertical_Line
5D Right_Square_Bracket 7D Right_Curly_Bracket
5E Circumflex 7E Tilde
5F Low_Line 7F DEL

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-10 May 1997

Hex Constant Name Hex Constant Name

80 Reserved_128 A0 No_Break_Space or NBSP
81 Reserved_129 A1 Inverted_Exclamation
82 BPH A2 Cent_Sign
83 NBH A3 Pound_Sign
84 Reserved_132 A4 Currency_Sign
85 NEL A5 Yen_Sign
86 SSA A6 Broken_Bar
87 ESA A7 Section_Sign
88 HTS A8 Diaeresis
89 HTJ A9 Copyright_Sign
8A VTS AA Feminine_Ordinal_Indicator
8B PLD AB Left_Angle_Quotation
8C PLU AC Not_Sign
8D RI AD Soft_Hyphen
8E SS2 AE Registered_Trade_Mark_Sign
8F SS3 AF Macron
90 DCS B0 Degree_Sign or Ring_Above
91 PU1 B1 Plus_Minus_Sign
92 PU2 B2 Superscript_Two
93 STS B3 Superscript_Three
94 CCH B4 Acute
95 MW B5 Micro_Sign
96 SPA B6 Pilcrow_Sign or Paragraph_Sign
97 EPA B7 Middle_Dot
98 Res B8 Cedilla
99 Res B9 Superscript_One
9A Res BA Masculine_Ordinal_Indicator
9B CSI BB Right_Angle_Quotation
9C ST BC Fraction_One_Quarter
9D OSC BD Fraction_One_Half
9E PM BE Fraction_Three_Quarters
9F APC BF Inverted_Question

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page B-11 May 1997

Hex Constant Name Hex Constant Name

C0 UC_A_Grave E0 LC_A_Grave
C1 UC_A_Acute E1 LC_A_Acute
C2 UC_A_Circumflex E2 LC_A_Circumflex
C3 UC_A_Tilde E3 LC_A_Tilde
C4 UC_A_Diaeresis E4 LC_A_Diaeresis
C5 UC_A_Ring E5 LC_A_Ring
C6 UC_AE_Diphthong E6 LC_AE_Diphthong
C7 UC_C_Cedilla E7 LC_C_Cedilla
C8 UC_E_Grave E8 LC_E_Grave
C9 UC_E_Acute E9 LC_E_Acute
CA UC_E_Circumflex EA LC_E_Circumflex
CB UC_E_Diaeresis EB LC_E_Diaeresis
CC UC_I_Grave EC LC_I_Grave
CD UC_I_Acute ED LC_I_Acute
CE UC_I_Circumflex EE LC_I_Circumflex
CF UC_I_Diaeresis EF LC_I_Diaeresis
D0 UC_Icelandic_Eth F0 LC_Icelandic_Eth
D1 UC_N_Tilde F1 LC_N_Tilde
D2 UC_O_Grave F2 LC_O_Grave
D3 UC_O_Acute F3 LC_O_Acute
D4 UC_O_Circumflex F4 LC_O_Circumflex
D5 UC_O_Tilde F5 LC_O_Tilde
D6 UC_O_Diaeresis F6 LC_O_Diaeresis
D7 Multiplication_Sign F7 Division_Sign
D8 UC_O_Oblique_Stroke F8 LC_O_Oblique_Stroke
D9 UC_U_Grave F9 LC_U_Grave
DA UC_U_Acute FA LC_U_Acute
DB UC_U_Circumflex FB LC_U_Circumflex
DC UC_U_Diaeresis FC LC_U_Diaeresis
DD UC_Y_Acute FD LC_Y_Acute
DE UC_Icelandic_Thorn FE LC_Icelandic_Thorn
DF LC_German_Sharp_S FF LC_Y_Diaeresis

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-1 May 1997

ANNEX C

EAST FORMAL SYNTAX SPECIFICATION

(This annex is not part of the Recommendation)

This annex describes the EAST syntax using a simple version of the Backus-Naur-Form. See
below the lexical rules, common to the whole syntax specification:

C 1 COMMON LEXICAL RULES

<underline> ::= _

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper_case> ::= A | B |...| Z

<lower_case> ::= a | b |...| z

<letter> ::= <upper_case> | <lower_case>

<letter_or_digit> ::= <letter> | <digit>

<identifier> ::= <letter> { [<underline>] <letter_or_digit> }

<integer_literal> ::= <digit> { [<underline>] <digit> }

<exponent> ::= E [+ | -] <integer_literal>

<floating_point_literal>::= <integer_literal>.<integer_literal> [<exponent>]

<identifier_list> ::= <identifier> { , <identifier> }

<character> ::= nul | ... | 0 | 1 | ... | b | ... | ~ | del

<character_literal> ::= ‘ <character> ’

<based_literal> ::= <base># <based_integer> [. <based_integer>] # [<exponent>]

<base> ::= 2 | 8 | 16

<based_integer> ::= <extended_digit> {[<underline>] <extended_digit>}

<extended_digit> ::= digit | A | B | C | D | E | F | a | b | c | d | e | f

<integer_based_literal> ::= <base># <based_integer> # [<exponent>]

<real_based_literal> ::= ::= <base># <based_integer> . <based_integer> # [<exponent>]

<simple_integer_based_literal > ::= <base># <based_integer> #

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-2 May 1997

C 2 DECLARATION OF THE LOGICAL DATA DESCRIPTION RECORD

<Logical Description> ::= package <identifier> is
 { <constant_declaration> |
 <type_declaration> | <subtype_declaration> |
 <representation_clause> }
 { <variable_declaration> | <constant_declaration> }
 end <identifier> ;

C 2.1 Subtype Declaration

<subtype_declaration> ::= subtype <subtype_identifier> is <subtype_indication> ;

<subtype_indication> ::= <type_mark> [<constraint>]

<type_mark> ::= <predefined_type> | <subtype_identifier> |
 <type_identifier>

C 2.2 Type Declaration

<type_declaration> ::= type <type_identifier> [<discriminant_part>] is
 <type_definition> ;

<discriminant_part> ::= (<discriminant_specification>
 { ; <discriminant_specification> })

<discriminant_specification>::= <identifier> : <discrete_type_mark> := <discriminant_value>

<discriminant_value> ::= <integer_literal> | <enumeration_literal>

<type_definition> ::= <integer_type_definition> | <real_type_definition> |
 <array_type_definition> | <record_type_definition> |
 <enumeration_type_definition>

a) constraint declaration

<constraint> ::= <range_constraint> | <floating_point_constraint> |
 <index_constraint>

<range_constraint> ::= range <range>

<range> ::= <integer_bound> .. <integer_bound> ;

<integer_bound> ::= [+ | -] <integer_literal> | <integer_constant_identifier>

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-3 May 1997

<floating_point_constraint> ::= [digits <positive_integer_literal>]
 [range <real_bound> .. <real_bound>] ;

<real_bound> ::= [+ | -] <floating_point_literal> | <real_identifier>

<index_constraint> ::= (<discrete_range> {, <discrete_range> })

b) integer type declaration

<integer_type_definition> ::= <range_constraint>

c) real type declaration

<real_type_definition> ::= <floating_point_constraint>

d) array type declaration

<array_type_definition> ::= <unconstrained_array_definition> |
 <constrained_array_definition>

<unconstrained_array_definition> ::= array (<index_subtype_definition>
{, <index_subtype_definition> }) of <type_mark> ;

<constrained_array_definition> ::= array (<discrete_range>
{, <discrete_range> }) of <type_mark> ;

<index_subtype_definition> ::= <discrete_type_mark> range <>

<discrete_range> ::= <discrete_type_mark> | <constrained_index>

<discrete_type_mark> ::= <integer_type_mark> | <enumeration_type_mark>

<constrained_index> ::= <index_bound> .. <index_bound>

<index_bound> ::= [+|-] <integer_literal> | <integer_constant_identifier> |
<enumeration_literal>

e) record type declaration

<record_type_definition> ::= record <component_list> end record ;

<component_list> ::= <component_declaration> { <component_declaration> }|
 { <component_declaration> } <variant_part> |
 null ;

<component_declaration> ::= <identifier> : <subtype_indication> ;

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-4 May 1997

<variant_part> ::= case <discriminant_identifier> is
 <variant> { <variant> }
 end case ;

<variant> ::= when <choice> { | <choice> } =>
 <component_list>

<choice> ::= [-] <integer_literal> | <discrete_range> | others |
 <enumeration_literal_specifiation>

f) enumeration type declaration

<enumeration_type_definition> ::=(<enumeration_literal> { , <enumeration_literal> })

<enumeration_literal>::= <identifier> | <character_literal>

g) predefined types

<predefined_type> ::= character | string | EOF

C 2.3 Object Declaration

<constant_declaration>::= <identifier> : constant [<type_mark>]
[:= <constant_value>];

<constant_value> ::= <integer_literal> |
 <floating_point_literal> |
 <enumeration_literal> |
 <string_literal> |
 <static_expression> ;

<static_expression> ::= { (<term>) | <term> }

<term> ::= [unary_operator] <number> [<binary_operator><number>]

<unary_operator> ::= + | -

<binary_operator> ::= + | - | * | / | **

-- See section 3.2.3.2 of the present Recommendation for further constraints on operators.

<number> ::= <integer_literal> | <floating_point_literal> |
 <integer_constant_identifier> | <real_constant_identifier>

<variable_declaration> ::= <identifier> : <type_mark>;

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-5 May 1997

C 2.4 Representation Clause

<representation_clause> ::= <length_clause> |
 <enumeration_representation_clause> |
 <record_representation_clause>

a) length clause

<length_clause>::= for <type_identifier>’size use <integer_literal> ;

b) enumeration representation clause

<enumeration_representation_clause>::= for <enumeration_type_identifier> use
<aggregate>;

<aggregate> ::=(<component_association> {, <component_association>})

<component_association> ::= <enumeration_literal> => <bit_pattern>

<bit_pattern> ::= <integer_literal> | <simple_integer_based_literal >

c) record representation clause

<record_representation_clause> ::= for <record_type_identifier> use
 record
 <component_clause> { <component_clause>}
 end record ;

<component_clause> ::= <component_identifier> at <distance>
 range <static_range> ;

<distance> ::= <word_number> * word_32_bits |
 <word_number> * word_16_bits | 0

<word_number> ::= <integer_literal>

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page C-6 May 1997

C 3 DECLARATION OF THE PHYSICAL DATA DESCRIPTION RECORD

<Physical Description> ::= package <identifier> is
 <declaration_part>
 end <identifier> ;

<declaration_part> ::= { <constant_declaration> |
 <type_declaration> | <subtype_declaration> }

<constant_declaration>::= <identifier> : constant <type_mark> := <constant_value> ;

<constant_value> ::= <integer_literal> | <floating_point_literal> |
 <enumeration_literal> |
 <array_value> | <record_value>

<record_value> ::= (<record_component_value> { , <record_component_value> })

<record_component_value> ::= <component_identifier> => <constant_value>

<array_value> ::= (<array_component_value> { , <array_component_value> })

<array_component_value> ::= <integer_literal> => <constant_value>

Other BNF rules needed for the physical data description record, if not defined above in this
section, are identical to those specified for the logical data description record.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page D-1 May 1997

ANNEX D

MAIN DIFFERENCES BETWEEN ADA AND EAST

(This annex is not part of the Recommendation)

This annex describes the main differences between EAST and the Ada programming language:

− the Ada features not retained in EAST;

− the Ada syntax elements which have another semantic in EAST;

− the EAST syntax restrictions vs. Ada.

D 1 ADA FEATURES NOT RETAINED IN EAST

No algorithmic features of the Ada programming language have been retained in EAST.

In Ada, a program unit can be a procedure, a function, a package or a task. Only packages
are allowed in EAST: a package structure is used to implement the logical description part;
another package implements the physical description part.

Within the declarative part, some Ada predefined types have been excluded for the data
description:

− The predefined type BOOLEAN, because no enumeration representation clause is
provided for this type in the Ada STANDARD package. Any bit pattern may therefore
be used for the implementation of a Boolean value.

− The predefined type INTEGER, because its definition depends on the implementation
(size, bounds, etc.). For the same reason, other integer types such as
LONG_INTEGER or SHORT_INTEGER are also forbidden.

− The subtypes of INTEGER: POSITIVE and NATURAL depend on the definition of
INTEGER and so depend on the implementation.

− The predefined type FLOAT, because its definition depends on the implementation
(size, number of digits, etc.). For the same reason, other floating-point types such as
LONG_FLOAT or SHORT_FLOAT are also forbidden.

− The predefined type DURATION and any fixed-point type, because their size depends
on the implementation. Consequence: a real type in EAST is always considered to be a
floating-point type.

Access types and derived types are not considered to be useful in a Data Description Record.

In the same way, generics have not been retained in EAST.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page D-2 May 1997

In Ada, a pragma is used to convey information to Ada compilers. As such, pragma use is not
justified in EAST.

D 2 ADA SYNTAX ELEMENTS THAT HAVE A DIFFERENT MEANING IN
EAST

A length clause is defined by the following declaration:

for type_identifier’size use static_expression ;

In Ada, the value of the expression specifies an upper bound for the number of bits to be
allocated to objects of the given type. In EAST, the expression specifies the exact number of
bits that any object of the given type occupies.

In Ada, a record representation clause specifies the storage representation of records in
memory, that is, the order, position, and size of record components in memory of a given
machine. In EAST, the record representation clause specifies the actual storage
representation on the medium.

D 3 EAST SYNTAX RESTRICTIONS VS. ADA

In Ada, the base for based numeric literals can be any number between 2 and 16. In EAST the
base can only be 2, 8 or 16.

In Ada the values specified in a range constraint within an integer or real type definition can be
a simple_expression. In EAST the values may only be a numeric literal or an identifier naming
an appropriate numeric constant.

In Ada, a constant declaration allows a list of identifiers. EAST allows only a single identifier.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page E-1 May 1997

ANNEX E

INFORMATIVE REFERENCES

(This annex is not part of the Recommendation)

Informative references [E2]-[E5] below contain information showing how EAST descriptions
can be used in the SFDU standard or presenting the Ada language, which is the basis of this
Recommendation.

[E1] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-7. Yellow Book. Issue 7. Washington, D.C.: CCSDS, November 1996.

[E2] Standard Formatted Data Units—Structure and Construction Rules. Recommendation
for Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2.
Washington, D.C.: CCSDS, May 1992.

[E3] Information Technology—Programming Languages—Ada. International Standard,
ISO/EIC 8652:1995. Geneva: ISO, 1995.

[E4] The Data Description Language EAST—A Tutorial. Draft Report Concerning Space
Data System Standards, CCSDS 645.0-G-1. Green Book. Issue 1, May 1997.

[E5] The Data Description Language EAST—List of Conventions. Draft Report Concerning
Space Data System Standards, CCSDS 646.0-G-1. Green Book. Issue 1, May 1997.

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1 Page I-1 May 1997

INDEX

Array storage method, 3-41

Array type, 3-11, 3-12, 3-13, 1

ASCII Representation, 3-50, 3-51, 3-53, 3-54, 3-
59

Based literal, 3-4, 3-5, 1

Binary Representation, 3-43, 3-48, 3-49, 3-50

BNF, 1-2, 1-4, 1, 6

Character literal, 1

Character type, 1

Comment, 3-1

Composite type, 2-3, 1

Constant, 3-7, 3-9, 3-10, 3-24, 3-25, 3-26, 3-27,
3-28, 3-32, 3-37, 3-38, 3-39, 3-41, 3-43, 3-44,
3-45, 3-48, 3-49, 3-50, 3-52, 3-54, 3-56, 3-58,
1, 2, 8, 9, 10, 11, 2, 3, 4, 6, 2

Constraint array type, 3-13

Decimal literal, 3-2, 3-3, 3-4

Delimiter, 1-3, 1-4, 3-1, 2

Discrete type, 1

Discriminant, 3-16, 3-17, 3-18, 3-19, 3-32, 3-35,
2, 3, 2, 4

Distance, 3-32, 3-38, 3-39, 5

Enumeration constraint, 3-23

Enumeration representation clause, 3-30, 2

Enumeration type, 3-8, 3-9, 3-50, 3-51, 3-52, 2

Identifier, 1-1, 1-3, 3-1, 3-2, 3-7, 3-8, 3-9, 3-10,
3-12, 3-15, 3-18, 3-24, 3-25, 3-26, 3-27, 3-40,
3-44, 3-50, 3-54, 4-1, 1, 2, 3, 8, 1, 2, 3, 4, 5,
6, 2

Index, 2-1, 2-3, 3-11, 3-12, 3-13, 3-15, 3-41, 3-
47, 2, 3

Integer constraint, 3-24

Integer type, 2-3, 3-8, 3-9, 3-10, 3-11, 3-13, 3-
15, 3-17, 3-18, 3-25, 3-28, 3-33, 3-49, 3-50,
3-54, 3-58, 3-59, 1, 3, 1

Length clause, 3-29, 2

Logical description, 2-2, 3-21, 2

Marker, 3-28, 2

Numeric literal, 2

Numeric type, 2-3

Object, 1-3, 2-2, 2-3, 3-7, 3-26, 3-41, 2, 4, 2

Package, 2-1, 2-2, 3-7, 3-40, 3-56, 3-58, 2, 6, 1

Physical description, 2-2, 3-41, 3-43, 3-45, 3-46,
3-51, 3-52, 3-53, 3-54, 6

Predefined type, 3-8, 2

Real constraint, 3-25

Real type, 3-10, 3-54

Record representation clause, 3-31, 3-32, 3-34,
3-35, 3-36, 3-38, 3-39, 2

Record type, 3-13, 3-14, 3-15, 3-17, 2

Representation clause, 2-3, 3-29, 3-30, 3-31, 3-
32, 3-34, 3-35, 3-36, 3-38, 3-39, 2, 5

Scalar type, 3-22, 3-50, 2

Separator, 3-1

Subtype, 2-3, 3-7, 3-23, 3-24, 3-25, 3-26, 3-27,
2, 3, 6

Unconstrained array type, 3-13

Variable, 1-4, 3-7, 3-26, 3-27, 3-28, 3-29, 3-32,
3-33, 3-38, 3-56, 2, 3, 2, 4

Variant, 1-2, 1-4, 3-16, 3-17, 3-32, 3-37, 3-38, 3,
4

Virtual discriminant, 3-18, 3-19, 3-21, 3-32, 4-1,
3

WORD_16_BITS, 3-39, 4-1, 5

WORD_32_BITS, 3-39, 4-1, 5

	CONTENTS
	1 INTRODUCTION
	2 OVERVIEW
	3 DEFINITION OF THE EAST LANGUAGE
	4 RESERVED KEYWORDS
	5 CONFORMANCE
	ANNEX A ACRONYMS AND GLOSSARY
	ANNEX B CHARACTER DEFINITION
	ANNEX C EAST FORMAL SYNTAX SPECIFICATION
	ANNEX D MAIN DIFFERENCES BETWEEN ADA AND EAST
	ANNEX E INFORMATIVE REFERENCES
	INDEX

